

Finding Departure-Time Nash Equilibrium in a Generic Bottleneck Model: An Heuristic Algorithm Master's Thesis

Student: Lucas JAVAUDIN, Supervisor: André DE PALMA, Jury: Robert Gary-Bobo

Master in Economics 2 – ENSAE

August 13, 2020

Contents

- [Bottleneck Model](#page-4-0)
- [Day-to-Day Dynamics](#page-10-0)

[Algorithm](#page-13-0)

[Heterogeneity](#page-20-0)

[Endogeneity](#page-22-0)

[Road Network](#page-24-0)

- The bottleneck model, introduced by Vickrey (1969), is the most popular model to study rush-hour departure-time choice
- The original model considers a single-road network with a continuum of identical commuters with linear preferences
- Many extensions have been proposed with nonlinear preferences, heterogeneous commuters, multiple-road networks, etc.
- There is no analytical method able to solve the model in a general case

- I propose an heuristic algorithm to find the equilibrium of the bottleneck model
- I show that the algorithm replicate very well the solutions found with analytical methods
- The algorithm can find the equilibrium in a model with heterogeneity, multiple-road network and endogeneity
- I identify three novel properties on models which are too complex to be solved with analytical methods

• Single-road network with a bottleneck of capacity s

• Total travel time is

$$
\mathcal{T}(t)=\frac{D(t)}{s}
$$

• Queue length is

$$
D(t) = \max \left(0, \sup_{\tau \in \{t_0, t\}} \int_{\tau}^{t} (r(u) - s) du \right)
$$

where $r(t)$ is departure rate at time t

• Total utility given departure time t_d and arrival time t_a is

$$
U(t_d,t_a)=\int\limits_{t_0}^{t_d}u^o(t)dt+\int\limits_{t_a}^{t_1}u^d(t)dt
$$

α-*β*-*γ* Model

- t ∗ : desired arrival time
- *α*: value of time
- *β*: penalty for early arrival
- *γ*: penalty for late arrival

$$
U(t_d, t_a) = -[\alpha(t_a - t_d) + \beta(t^* - t_a)_+ + \gamma(t_a - t^*)_+]
$$

- Free-flow utility is $U_0(t) = U(t,t) = \int\limits_0^t$ t_0 $u^o(u)du + \int\limits_0^{t_1}$ t $u^d(u)$ du
- At equilibrium, all N commuters are leaving origin between t and \bar{t} and have the same utility level \overline{U}
- Utility at t and \bar{t} is equal to free-flow utility

Equilibrium

• Equilibrium travel times are implicitly given by

$$
U_0(t)-\overline{U}=\int\limits_t^{t+T(t)}u^d(s)ds,\quad \forall t\in[\underline{t},\overline{t}]
$$

Departure rate of individuals are derived from queue length equation:

$$
r(t) = s \cdot u^o(t)/u^d(t+T(t)), \quad t \in [\underline{t}, \overline{t}]
$$

- The model presented above assume a continuous strategy space (i.e. continuous time) and a continuum of commuters
- Many papers with numeric methods assume a discrete strategy set (e.g. papers on day-to-day dynamics)
- Otsubo and Rapoport (2008) assume indivisible commuters
- I assume a discrete strategy set and discrete commuters
- The results of the continuous and discrete model are very close for a large number of commuters and periods

[Details](#page-28-0)

- Day-to-day dynamics models study the convergence of the bottleneck model to an equilibrium
- These models try to replicate the behaviors of commuters from day to day
- Iryo (2008) proves the instability of the equilibrium with continuous iterations
- Guo et al. (2018) proves the instability of the equilibrium with discrete iterations
- Both papers use the proportional swap mechanism
- These models are limited to homogeneous commuters in a single-road network

[Introduction](#page-2-0) [Bottleneck Model](#page-4-0) [Day-to-Day Dynamics](#page-10-0) [Algorithm](#page-13-0) [Simulations](#page-17-0) [Heterogeneity](#page-20-0) [Endogeneity](#page-22-0) [Road Network](#page-24-0) [Conclusion](#page-27-0) Day-to-Day Dynamics Proportional Swap Mechanism (Smith, 1984)

- Departure-time space is discretized and commuter space is continuous
- The population shift from departure $t_i \in \mathcal{T}$ to departure $t_i \in \mathcal{T}$ from one iteration to the next is

$$
\lambda r(t_i) \left[U_j(r) - U_i(r) \right]_+
$$

where

- λ defines the step size,
- $r(t_i)$ is the departure rate at time t_i
- \bullet $U_i(r)$ is the utility associated with departure t_i

Day-to-Day Dynamics

Convergence results (Lamotte and Geroliminis, 2020)

Given departure times $\mathbf{t}^* = \{t_1^*, \ldots, t_N^*\}$, the potential φ_i of a commuter i is the relative difference between the maximum utility and the current utility of the commuter

$$
\varphi_i(\mathbf{t}^*) = \frac{\max_t U_i(t) - U_i(t_i^*)}{U_i(t_i^*)}
$$

The average potential $\frac{1}{N}\sum_i \varphi_i(\mathbf{t}^*)$ can be used to measure distance of a state **t** ∗ to equilibrium

- \bullet Initialize random departure times \mathbf{t}^0 and set iteration counter $\tau=0.$
- \bullet For each individual *i*, compute the utility $U_i^\tau(t)$ that she can get at any departure time t, given the departure times t^{τ}_{-i} of the other individuals.
- **3** Compute the potential φ_i^{τ} of each individual *i*.
- ⁴ Randomly select an individual with probabilities proportional to $(\varphi_i^\tau)^\beta.$
- ⁵ Switch the selected individual to her best departure time: $t_i^{\tau+1} = \arg \max_t \; U_i^{\tau}(t).$
- **•** Stop the algorithm if some convergence criterion is met; otherwise, set $\tau = \tau + 1$ and go back to [2.](#page-14-0)

Naive Algorithm

- \bullet Initialize random departure times \mathbf{t}^0 and set iteration counter $\tau=0.$
- \bullet For each individual *i*, compute the utility $U_i^\tau(t)$ that she can get at any departure time t, given the departure times t^τ_{-i} of the other individuals.
- **3** Compute the potential φ_i^{τ} of each individual *i*.
- ⁴ Randomly select an individual with probabilities proportional to $(\Phi_i^\tau)^\beta$.
- ⁵ Sort the departure times of the selected individual by order of decreasing utility and randomly select one departure time \hat{t} in the first quantile of order q. Switch the selected individuals to this departure time, *i.e.* $t_i^{\tau} = \hat{t}$.
- **•** Compute some criterion measuring distance to equilibrium. If the switch does not improve this criterion, then revert the switch by putting the switched individual back to her previous departure time.
- **2** Stop the algorithm if some convergence criterion is met; otherwise, set $\tau = \tau + 1$ and go back to [2.](#page-16-0)

- $N = 1200, m + 1 = 181, t_0 = -1.5, t_1 = 1.5$
- Marginal utility at origin is $u^o(t) = 1 \frac{\tan^{-1}(4t)}{\pi}$ $\frac{1}{\pi}$ and marginal utility at destination is $u^d(t) = 1 + \frac{\tan^{-1}(4t)}{\pi}$ *π*

Potential Convergence

[Calibration](#page-37-0)

$$
\beta=0, q=20\%
$$

Results

Setup

Marginal utility at origin is $u_i^o(t) = 1 - \frac{\tan^{-1}(4 \cdot v_i^o \cdot t)}{\pi}$ *π* and marginal utility at destination is $u_i^d(t) = 1 + \frac{\tan^{-1}(4 \cdot v_i^d \cdot t)}{\pi}$ $\frac{(4+v_i+1)}{\pi}$ where $\left(\ln(v_i^o), \ln(v_i^d)\right)^{\mathsf{T}} \sim \mathcal{N}\left((0,0)^{\mathsf{T}},\right)$ μ 0 0 *µ* \setminus 0.6 0.8 $\frac{1}{2}$ 1.0 $\frac{1}{2}$ 1.2 1.4 $u^o(t)$ (Commuter 1) *u ^d*(*t*) (Commuter 1) $u^o(t)$ (Commuter 2) *u ^d*(*t*) (Commuter 2) *u ^o*(*t*) (Commuter 3) *u ^d*(*t*) (Commuter 3)

> −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 Time

Results

With higher commuter heterogeneity, rush hour is shorter and congestion is smaller

[Introduction](#page-2-0) [Bottleneck Model](#page-4-0) [Day-to-Day Dynamics](#page-10-0) [Algorithm](#page-13-0) [Simulations](#page-17-0) [Heterogeneity](#page-20-0) [Endogeneity](#page-22-0) [Road Network](#page-24-0) [Conclusion](#page-27-0) \bigcirc Endogeneity Setup (from Fosgerau and Small, 2017)

Marginal utility at origin is $u^o(t) = [x^o(t)]^{\pi_o}$ and marginal utility at destination is $u^d(t) = [x^d(t)]^{\pi_d}$, with

$$
U(t_d, t_a) = 2 \ln \left(\int_{t_0}^{t_d} u^o(t) dt \right) + \ln \left(\int_{t_a}^{t_1} u^d(t) dt \right)
$$

 σ *π*_o and *π*_d represent the intensity of the agglomeration economies at origin and at destination

Results

With higher agglomeration economies, rush hour is earlier and congestion is larger

- Network with two upstream bottlenecks (capacity s_1 and s_2) and one downstream bottleneck (capacity s_d)
- $n_1 = 150$ commuters leaving from origin O_1 and $n_2 = 300$ commuters leaving from origin $O₂$

With *α*-*β*-*γ* preferences, Arnott et al. show that the derivative of total cost is positive with s_2 under the following condition

$$
(1+\nu)(1-\theta)<\frac{\mathsf{s}_d}{\mathsf{s}_2}<\mathsf{max}\left(1,1-\theta+\sqrt{\nu(\nu+\theta)(1-\theta)}\right)
$$

where $\theta = \beta/\alpha$ and $\nu = n_1/n_2$

• We test if the paradox holds with nonlinear preferences

The paradox still holds with nonlinear preferences for some values of s_2

- I proposed an algorithm able to find the equilibrium in a general bottleneck model
- The algorithm can be used to identify novel properties in intractable models
- **Q** Directions for future research:
	- **•** Calibration
	- Different forms of heterogeneity
	- Policies
	- Joint morning-evening commute choice

Setup

- • There are N commuters and $m + 1$ time periods
- The strategy set is

$$
\mathcal{T} = \{t_0, t_0 + \Delta t, t_0 + 2\Delta t, \ldots, t_0 + (m-1)\Delta t, t_1\}
$$

where $\Delta t = (t_1 - t_0)/m$

Queue length is defined by $D(t_0) = \mathsf{max}\left(r(t)-s, 0\right)$ and

$$
D(t) = \max (D(t-1) + r(t) - s, 0), \quad \forall t \in \mathcal{T}, t > t_0
$$

where $r(t)$ is the number of commuters leaving from origin at time t

Travel Time Probability

- If $D(t_d 1) = 0$ and $r(t_d) \leq s$, $T(t_d, t_d) = 1$ and $T(t_d, t) = 0$, for any $t \neq t_d$
- If $D(t_d 1) = 0$ and $r(t_d) > s$,

$$
T(t_d, t_a) = \begin{cases} 0 & \text{if } t_a < t_d \\ \frac{s}{r(t_d)} & \text{if } t_a \in [t_d, \tilde{t}) \\ \frac{r(t_d) \mod s}{r(t_d)} & \text{if } t_a = \tilde{t} \\ 0 & \text{if } t_a > \tilde{t} \end{cases},
$$

where $\tilde{t} = t_d + |r(t)/s|$ is the time at which the last commuter is served

Travel Time Probability

$$
\bullet \ \text{If } D(t_d-1) > 0,
$$

$$
T(t_d, t_a) = \begin{cases} 0 & \text{if } t_a < \hat{t} \\ \frac{s - R(t_d)}{r(t_d)} & \text{if } t_a = \hat{t} \\ \frac{s}{r(t_d)} & \text{if } t_a \in (\hat{t}, \tilde{t}) \\ \frac{\left(r(t_d) - s + R(t_d)\right) \mod s}{r(t_d)} & \text{if } t_a = \tilde{t} \\ 0 & \text{if } t_a > \tilde{t} \end{cases}
$$

where

- $\hat{t} = t_d + |D(t_d 1)/s|$ the time at which the last commuter in the queue at time $t_d - 1$ is served;
- $R(t_d) = D(t_d 1)$ mod s the number of commuters in the queue at time $t_d - 1$ who are served at time \hat{t} ;
- $\tilde{t} = \hat{t} + |(r(t_d) s + R(t_d))/s|$ the time at which the last commuter who arrived at the bottleneck at time t_d is served.

Example of Travel Time Probability

$$
s=5, D(t_d-1)=7, r(t_d)=15
$$

Utility and Nash Equilibrium

 \bullet Utility when leaving at time t is

$$
U_i(t) = \sum_{\tau \leq t} u_i^o(\tau) + \sum_{\tau \geq t} u_i^d(\tau) F(t, \tau),
$$

where

$$
F(t,\tau)=\sum_{u\leq \tau}T(t,u)
$$

An equilibrium of this model is a set of departure-time values $\mathbf{t}^* = \{t_1^*, \dots, t_N^*\} \in \mathcal{T}^N$ such that no commuter i can increase her utility by switching from departure time t_i^* to $t \neq t_i^*$, while departure times t_{-i}^* of the other commuters are fixed

[Go back](#page-9-0)

Possible Equilibrium

4 0 (12) 13 (1/12)

Iteration 0

Iteration 1

Iteration 2

[Go back](#page-14-1)

Convergence of Potential with *β*

β defines how likely it is to switch individuals with high potential

Convergence of Potential with q

q defines how the new departure time of the switched individual is selected

Switch validity

A switch is valid if it improves some distance to equilibrium

Potential Convergence with Morning and Evening Commute

0 5000 10000 15000 20000 25000 Iteration 0.000 0.025 0.050 0.075 $\begin{bmatrix} 0.100 \\ 0.075 \end{bmatrix}$ 0.125 0.150 0.175 Mean $---$ Min $---$ Max

Morning commute **Evening commute**

Potential Convergence with *α*-*β*-*γ* Preferences

Results with *α*-*β*-*γ* Preferences

