Introduction	Bottleneck Model	Day-to-Day Dynamics	Algorithm	Simulations	Heterogeneity	Endogeneity	Road Network	Conclusion
00	000000	000	0000	000	00	00	000	

Finding Departure-Time Nash Equilibrium in a Generic Bottleneck Model: An Heuristic Algorithm Master's Thesis

Student: Lucas JAVAUDIN, Supervisor: André DE PALMA, Jury: Robert GARY-BOBO

Master in Economics 2 - ENSAE

August 13, 2020

Introduction	Bottleneck Model	Day-to-Day Dynamics	Algorithm	Simulations	Heterogeneity	Endogeneity	Road Network	Conclusion
00	000000	000	0000	000	00	00	000	

Contents

- 2 Bottleneck Model
- Oay-to-Day Dynamics

4 Algorithm

6 Heterogeneity

7 Endogeneity

8 Road Network

Introduction	Bottleneck Model	Day-to-Day Dynamics	Algorithm	Heterogeneity	Endogeneity	Road Network	Conclusion
••							
Intro	duction						
Context							

- The bottleneck model, introduced by Vickrey (1969), is the most popular model to study rush-hour departure-time choice
- The original model considers a single-road network with a continuum of identical commuters with linear preferences
- Many extensions have been proposed with nonlinear preferences, heterogeneous commuters, multiple-road networks, etc.
- There is no analytical method able to solve the model in a general case

Introduction	Bottleneck Model	Day-to-Day Dynamics	Algorithm	Heterogeneity	Endogeneity	Road Network	Conclusion
$\circ \bullet$							
1 .	1						
Intro	duction						
Contribu	tions						

- I propose an heuristic algorithm to find the equilibrium of the bottleneck model
- I show that the algorithm replicate very well the solutions found with analytical methods
- The algorithm can find the equilibrium in a model with heterogeneity, multiple-road network and endogeneity
- I identify three novel properties on models which are too complex to be solved with analytical methods

Introduction	Bottleneck Model	Day-to-Day Dynamics	Algorithm	Simulations	Heterogeneity	Endogeneity	Road Network	Conclusion
00	000000	000	0000	000	00	00	000	0
Bottl	eneck M	odel						
Supply-S	ide							

• Single-road network with a bottleneck of capacity s

Total travel time is

$$T(t)=\frac{D(t)}{s}$$

• Queue length is

$$D(t) = \max\left(0, \sup_{\tau \in \{t_0, t\}} \int_{\tau}^{t} (r(u) - s) du\right)$$

where r(t) is departure rate at time t

Introduction 00	Bottleneck Model	Day-to-Day Dynamics 000	Algorithm 0000	Simulations 000	Heterogeneity 00	Endogeneity 00	Road Network 000	Conclusion O		
Bottleneck Model										
D	C: 1									
Demand-	Side									

• Total utility given departure time t_d and arrival time t_a is

$$U(t_d, t_a) = \int_{t_0}^{t_d} u^o(t) dt + \int_{t_a}^{t_1} u^d(t) dt$$

Introduction 00	Bottleneck Model	Day-to-Day Dynamics	Algorithm 0000	Simulations 000	Heterogeneity 00	Endogeneity 00	Road Network 000	Conclusion O
Bottle	eneck M	odel						

lpha-eta- γ Model

- t*: desired arrival time
- α : value of time
- β : penalty for early arrival
- γ : penalty for late arrival

$$U(t_d, t_a) = -\left[\alpha(t_a - t_d) + \beta(t^* - t_a)_+ + \gamma(t_a - t^*)_+\right]$$

Introduction 00	Bottleneck Model	Day-to-Day Dynamics	Algorithm 0000	Simulations 000	Heterogeneity 00	Endogeneity 00	Road Network 000	Conclusion O
Bottle	eneck M	odel						

Equilibrium

- Free-flow utility is $U_0(t) = U(t,t) = \int_{t_0}^t u^o(u) du + \int_t^{t_1} u^d(u) du$
- At equilibrium, all N commuters are leaving origin between \underline{t} and \overline{t} and have the same utility level \overline{U}
- Utility at \underline{t} and \overline{t} is equal to free-flow utility

	Bottleneck Model		Algorithm		Heterogeneity	Endogeneity	Road Network	Conclusion
00	000000	000	0000	000	00	00	000	
Bottl	eneck M	odel						
Equilibriu	ım							

• Equilibrium travel times are implicitly given by t + T(t)

$$U_0(t) - \overline{U} = \int_t^{t+T(t)} u^d(s) ds, \quad \forall t \in [\underline{t}, \overline{t}]$$

• Departure rate of individuals are derived from queue length equation:

$$r(t) = s \cdot u^o(t)/u^d(t + T(t)), \quad t \in [\underline{t}, \overline{t}]$$

Introduction 00	Bottleneck Model 00000●	Day-to-Day Dynamics 000	Algorithm 0000	Simulations 000	Heterogeneity 00	Endogeneity 00	Road Network 000	Conclusion O
Bottl	eneck M	odel						
Discustin	ation							

- The model presented above assume a continuous strategy space (i.e. continuous time) and a continuum of commuters
- Many papers with numeric methods assume a discrete strategy set (e.g. papers on day-to-day dynamics)
- Otsubo and Rapoport (2008) assume indivisible commuters
- I assume a discrete strategy set and discrete commuters
- The results of the continuous and discrete model are very close for a large number of commuters and periods

Details

Introduction	Bottleneck Model	Day-to-Day Dynamics	Algorithm	Simulations	Heterogeneity	Endogeneity	Road Network	Conclusion
00	000000	●00	0000	000	00	00	000	O
Day-t	o-Day D)ynamics						

- Day-to-day dynamics models study the convergence of the bottleneck model to an equilibrium
- These models try to replicate the behaviors of commuters from day to day
- Iryo (2008) proves the instability of the equilibrium with continuous iterations
- Guo et al. (2018) proves the instability of the equilibrium with discrete iterations
- Both papers use the proportional swap mechanism
- These models are limited to homogeneous commuters in a single-road network

Introduction 00	Bottleneck Model 000000	Day-to-Day Dynamics O●O	Algorithm 0000	Simulations 000	Heterogeneity 00	Endogeneity 00	Road Network 000	Conclusion O		
Day-to-Day Dynamics										
Proportio	onal Swap Me	chanism (Smith.	1984)							

- Departure-time space is discretized and commuter space is continuous
- The population shift from departure $t_i \in \mathcal{T}$ to departure $t_j \in \mathcal{T}$ from one iteration to the next is

$$\lambda r(t_i) \left[U_j(r) - U_i(r) \right]_+$$

where

- λ defines the step size,
- $r(t_i)$ is the departure rate at time t_i
- $U_i(r)$ is the utility associated with departure t_i

Bottleneck Model	Day-to-Day Dynamics	Algorithm	Heterogeneity	Endogeneity	Road Network	Conclusion
	000					

Day-to-Day Dynamics

Convergence results (Lamotte and Geroliminis, 2020)

Introduction	Bottleneck Model	Day-to-Day Dynamics	Algorithm	Simulations	Heterogeneity	Endogeneity	Road Network	Conclusion
00	000000	000	●000	000	00	00	000	O
Algor	ithm							

Given departure times t^{*} = {t₁^{*},..., t_N^{*}}, the potential φ_i of a commuter i is the relative difference between the maximum utility and the current utility of the commuter

$$arphi_i(\mathbf{t}^*) = rac{\max_t U_i(t) - U_i(t^*_i)}{U_i(t^*_i)}$$

• The average potential $\frac{1}{N}\sum_{i}\varphi_{i}(\mathbf{t}^{*})$ can be used to measure distance of a state \mathbf{t}^{*} to equilibrium

Introduction	Bottleneck Model	Day-to-Day Dynamics	Algorithm	Simulations	Heterogeneity	Endogeneity	Road Network	Conclusion
00	000000	000	0●00	000	00	00	000	O
Algor	ithm							

- **(**) Initialize random departure times \mathbf{t}^0 and set iteration counter $\tau = \mathbf{0}$.
- Or each individual *i*, compute the utility U^τ_i(t) that she can get at any departure time t, given the departure times t^τ_{-i} of the other individuals.
- **③** Compute the potential φ_i^{τ} of each individual *i*.
- Randomly select an individual with probabilities proportional to $(\varphi_i^{\tau})^{\beta}$.
- Switch the selected individual to her best departure time: $t_i^{\tau+1} = \arg \max_t U_i^{\tau}(t).$
- Stop the algorithm if some convergence criterion is met; otherwise, set $\tau = \tau + 1$ and go back to 2.

Example

Introduction 00	Bottleneck Model 000000	Day-to-Day Dynamics 000	Algorithm 00●0	Simulations 000	Heterogeneity 00	Endogeneity 00	Road Network 000	Conclusion O
Alcor	ithm							

Naive Algorithm

Introduction	Bottleneck Model	Day-to-Day Dynamics	Algorithm	Simulations	Heterogeneity	Endogeneity	Road Network	Conclusion
00	000000	000	000●	000	00	00	000	O
Algor	ithm							

- **()** Initialize random departure times \mathbf{t}^0 and set iteration counter $\tau = \mathbf{0}$.
- Or each individual *i*, compute the utility U^τ_i(t) that she can get at any departure time t, given the departure times t^τ_{-i} of the other individuals.
- **③** Compute the potential φ_i^{τ} of each individual *i*.
- Randomly select an individual with probabilities proportional to $(\Phi_i^{\tau})^{\beta}$.
- Sort the departure times of the selected individual by order of decreasing utility and randomly select one departure time t̂ in the first quantile of order q. Switch the selected individuals to this departure time, i.e. t_i^T = t̂.
- Compute some criterion measuring distance to equilibrium. If the switch does not improve this criterion, then revert the switch by putting the switched individual back to her previous departure time.
- Stop the algorithm if some convergence criterion is met; otherwise, set $\tau = \tau + 1$ and go back to 2.

Introduction	Bottleneck Model	Day-to-Day Dynamics	Algorithm	Simulations	Heterogeneity	Endogeneity	Road Network	Conclusion
00	000000	000	0000	●00	00	00	000	O
Simul	ations							

- Setup
- N = 1200, m + 1 = 181, $t_0 = -1.5$, $t_1 = 1.5$
- Marginal utility at origin is $u^o(t) = 1 \frac{\tan^{-1}(4t)}{\pi}$ and marginal utility at destination is $u^d(t) = 1 + \frac{\tan^{-1}(4t)}{\pi}$

	Bottleneck Model	Day-to-Day Dynamics	Algorithm	Simulations	Heterogeneity	Endogeneity	Road Network	Conclusion
00	000000	000	0000	000	00	00	000	

Potential Convergence

Calibration

$$\beta = 0$$
, $q = 20\%$

Introduction	Bottleneck Model	Day-to-Day Dynamics	Algorithm	Simulations	Heterogeneity	Endogeneity	Road Network	Conclusion
00	000000	000	0000	000	00	00	000	O
Simul	ations							

Results

Introduction	Bottleneck Model	Day-to-Day Dynamics	Algorithm	Simulations	Heterogeneity	Endogeneity	Road Network	Conclusion
00	000000	000	0000	000	●O	00	000	O
Heter	ogeneity							

Setup

Marginal utility at origin is $u_i^o(t) = 1 - \frac{\tan^{-1}(4 \cdot v_i^o \cdot t)}{\pi}$ and marginal utility at destination is $u_i^d(t) = 1 + rac{ ext{tan}^{-1}(4\cdot v_i^d\cdot t)}{\pi}$ where $\left(\ln(\mathbf{v}_i^o), \ln(\mathbf{v}_i^d)\right)^T \sim \mathcal{N}\left((0, 0)^T, \begin{pmatrix} \mu & 0\\ 0 & \mu \end{pmatrix}\right)$ 1.4 1.2 $u^{o}(t)$ (Commuter 1) $u^{d}(t)$ (Commuter 1) Atilia 1.0 $u^{o}(t)$ (Commuter 2) $u^{d}(t)$ (Commuter 2) $u^{o}(t)$ (Commuter 3) $u^{d}(t)$ (Commuter 3) 0.8 0.6

-1.5

-1.0

-0.5

0.0

Time

0.5

1.0

1.5

Introduction	Bottleneck Model	Day-to-Day Dynamics	Algorithm	Simulations	Heterogeneity	Endogeneity	Road Network	Conclusion
00	000000	000	0000	000	O•	00	000	O
Heter	ogeneity							

Results

With higher commuter heterogeneity, rush hour is shorter and congestion is smaller

Introduction 00	Bottleneck Model 000000	Day-to-Day Dynamics 000	Algorithm 0000	Simulations 000	Heterogeneity 00	Endogeneity ●0	Road Network 000	Conclusion O
Endo	reneity							
Sotup (fr	Seriercy Formerall	and Small 2017	1					

• Marginal utility at origin is $u^o(t) = [x^o(t)]^{\pi_o}$ and marginal utility at destination is $u^d(t) = [x^d(t)]^{\pi_d}$, with

$$U(t_d, t_a) = 2 \ln \left(\int_{t_0}^{t_d} u^o(t) dt \right) + \ln \left(\int_{t_a}^{t_1} u^d(t) dt \right)$$

• π_o and π_d represent the intensity of the agglomeration economies at origin and at destination

Introduction	Bottleneck Model	Day-to-Day Dynamics	Algorithm	Simulations	Heterogeneity	Endogeneity	Road Network	Conclusion
00	000000	000	0000	000	00	O•	000	O
Endo	geneity							

Results

With higher agglomeration economies, rush hour is earlier and congestion is larger

Introduction 00	Bottleneck Model 000000	Day-to-Day Dynamics 000	Algorithm 0000	Simulations 000	Heterogeneity 00	Endogeneity 00	Road Network ●00	Conclusion O
Road	Network	٢						
Setup (fr	om Arnott et	al., 1993)						

- Network with two upstream bottlenecks (capacity s_1 and s_2) and one downstream bottleneck (capacity s_d)
- $n_1 = 150$ commuters leaving from origin O_1 and $n_2 = 300$ commuters leaving from origin O_2

Introduction 00	Bottleneck Model 000000	Day-to-Day Dynamics 000	Algorithm 0000	Simulations 000	Heterogeneity 00	Endogeneity 00	Road Network O●O	Conclusion O
Road	Network	<						
Paradox								

 With α-β-γ preferences, Arnott et al. show that the derivative of total cost is positive with s₂ under the following condition

$$(1+
u)(1- heta) < rac{ extsf{s}_d}{ extsf{s}_2} < \max\left(1, 1- heta+\sqrt{
u(
u+ heta)(1- heta)}
ight)$$

where heta=eta/lpha and $u={\it n}_1/{\it n}_2$

• We test if the paradox holds with nonlinear preferences

Introduction 00	Bottleneck Model 000000	Day-to-Day Dynamics 000	Algorithm 0000	Simulations 000	Heterogeneity 00	Endogeneity 00	Road Network 00●	Conclusion O
Endo Results	geneity							

s 2	Average potential	Total cost
2	0.98%	40015
3	0.32%	31927
4	0.38%	32946
5	0.33%	32191

The paradox still holds with nonlinear preferences for some values of s_2

Introduction	Bottleneck Model	Day-to-Day Dynamics	Algorithm	Simulations	Heterogeneity	Endogeneity	Road Network	Conclusion
00	000000	000	0000	000	00	00	000	
Conc	usion							

- I proposed an algorithm able to find the equilibrium in a general bottleneck model
 - The algorithm can be used to identify novel properties in intractable models
 - Directions for future research:
 - Calibration
 - Different forms of heterogeneity
 - Policies
 - Joint morning-evening commute choice

Setup

- There are N commuters and m+1 time periods
- The strategy set is

$$\mathcal{T} = \{t_0, t_0 + \Delta t, t_0 + 2\Delta t, \dots, t_0 + (m-1)\Delta t, t_1\}$$

where $\Delta t = (t_1 - t_0)/m$

• Queue length is defined by $D(t_0) = \max(r(t) - s, 0)$ and

$$D(t) = \max ig(D(t-1) + r(t) - s, 0 ig), \quad orall t \in \mathcal{T}, \ t > t_0$$

where r(t) is the number of commuters leaving from origin at time t

Travel Time Probability

- If $D(t_d-1)=0$ and $r(t_d) \leq s$, $T(t_d,t_d)=1$ and $T(t_d,t)=0$, for any $t \neq t_d$
- If $D(t_d 1) = 0$ and $r(t_d) > s$,

$$T(t_d, t_a) = \begin{cases} 0 & \text{if } t_a < t_d \\ \frac{s}{r(t_d)} & \text{if } t_a \in [t_d, \tilde{t}) \\ \frac{r(t_d) \mod s}{r(t_d)} & \text{if } t_a = \tilde{t} \\ 0 & \text{if } t_a > \tilde{t} \end{cases},$$

where $\tilde{t} = t_d + \lfloor r(t)/s \rfloor$ is the time at which the last commuter is served

Travel Time Probability

• If
$$D(t_d - 1) > 0$$
,

$$T(t_d, t_a) = \begin{cases} 0 & \text{if } t_a < \hat{t} \\ \frac{s - R(t_d)}{r(t_d)} & \text{if } t_a = \hat{t} \\ \frac{s}{r(t_d)} & \text{if } t_a \in (\hat{t}, \tilde{t}) \\ \frac{\left(r(t_d) - s + R(t_d)\right) \mod s}{r(t_d)} & \text{if } t_a = \tilde{t} \\ 0 & \text{if } t_a > \tilde{t} \end{cases},$$

where

- $\hat{t} = t_d + \lfloor D(t_d 1)/s \rfloor$ the time at which the last commuter in the queue at time $t_d 1$ is served;
- $R(t_d) = D(t_d 1) \mod s$ the number of commuters in the queue at time $t_d 1$ who are served at time \hat{t} ;
- $\tilde{t} = \hat{t} + \lfloor (r(t_d) s + R(t_d))/s \rfloor$ the time at which the last commuter who arrived at the bottleneck at time t_d is served.

Example of Travel Time Probability

$$s = 5$$
, $D(t_d - 1) = 7$, $r(t_d) = 15$

t	Capacity <i>s</i>	$\#$ served who left before t_d	$\#$ served who left at t_d	$T(t_d,t)$
t _d	5	5	0	0
$t_d + 1$	5	2	3	3/15
$t_d + 2$	5	0	5	5/15
$t_d + 3$	5	0	5	5/15
$t_d + 4$	5	0	2	2/15

Utility and Nash Equilibrium

• Utility when leaving at time t is

$$U_i(t) = \sum_{\tau \leq t} u_i^o(\tau) + \sum_{\tau \geq t} u_i^d(\tau) F(t,\tau),$$

where

$$F(t,\tau) = \sum_{u \leq \tau} T(t,u)$$

• An equilibrium of this model is a set of departure-time values $\mathbf{t}^* = \{t_1^*, \ldots, t_N^*\} \in \mathcal{T}^N$ such that no commuter *i* can increase her utility by switching from departure time t_i^* to $t \neq t_i^*$, while departure times t_{-i}^* of the other commuters are fixed

Go back

Possible Equilibrium

			<i>s</i> = 2		
	t	$u^o(t)$	$u^d(t)$	$U_{\rm freeflow}$	(t)
	0	3	0	11	
	1	3	3	14	
	2	4	4	15	
	3	2	1	13	
	4	0	0	12	
t	r(t)	$U_t(t)$	max	$_{\tau} U_t(\tau)$	$\varphi(t)$
0	0	(11)		13	(2/11
1	2	<u></u> 14		14	0
2	4	13		13	0
3	0	(11)		13	(2/11)

13

0

4

(12)

(1/12)

Iteration 0

		t	$u^o(t)$	$u^d(t)$	$U_{\rm freeflow}(t)$	
		0	3	0	11	
		1	3	3	14	
		2	4	4	15	
		3	2	1	13	
		4	0	0	12	
t	r(t)	$U_t(t)$	arg n	$\max_{ au} U_t(au)$	T) max _{au} $U_t(t)$	$ au(t) = \varphi(t)$
0	1	11		1	14	3/11
1	1	14		1	14	0
2	2	15		2	15	0
3	1	13		1	14	1/13
4	1	12		1	14	1/6

Iteration 1

		t	$u^o(t)$	$u^d(t)$	$U_{\rm freeflow}(t)$	
		0	3	0	11	
		1	3	3	14	
		2	4	4	15	
		3	2	1	13	
		4	0	0	12	
t	r(t)	$U_t(t)$	arg n	$\max_{\tau} U_t(\tau)$	$ au$) max _{au} U_t ($ au$) $\varphi(t)$
0	0	(11)		•		•
1	2	14		1	14	0
2	2	15		2	15	0
3	1	13		2	13.67	2/39
4	1	12		2	13.67	5/36

Iteration 2

		t	$u^o(t)$	$u^d(t)$	$U_{\rm freeflow}(t)$	
		0	3	0	11	
		1	3	3	14	
		2	4	4	15	
		3	2	1	13	
		4	0	0	12	
t	r(t)	$U_t(t)$	argı	$\max_{\tau} U_t(t)$	τ) max _{au} U_{t}	$_t(au) \varphi(t)$
0	0	(11)			•	•
1	2	14		1	14	0
2	3	13.67		2	13.67	7 0
3	1	13	1	, 2 or 3	13	0
Λ	0	(12)				

Go back

Convergence of Potential with β

 β defines how likely it is to switch individuals with high potential

Convergence of Potential with q

 \boldsymbol{q} defines how the new departure time of the switched individual is selected

Switch validity

A switch is valid if it improves some distance to equilibrium

Potential Convergence with Morning and Evening Commute

Morning commute

Evening commute

Potential Convergence with $\alpha\text{-}\beta\text{-}\gamma$ Preferences

Results with α - β - γ Preferences

