Introduction 000000	Incentive Policy	Algorithm 00	Application to Mode Choice	Conclusion

Large-Scale Allocation of Personalized Incentives IEEE – ITSC 2022

Lucas Javaudin[†], Andrea Araldo[‡], André de Palma[†]

† CY Cergy Paris University ‡ Télécom SudParis, Institut Polytechnique de Paris

July 20, 2022

Introduction ••••••	Incentive Policy	Algorithm 00	Application to Mode Choice	Conclusion
Introduc	ction			
Motivation				

- Standard transportation policies are **non-personalized**: subsidies and taxes are equal for everyone or they differ according to objective and observable characteristics.
- Example: In several countries, public-transit services are subsidized. The subsidy is equal for everyone or vary by population group (e.g., poor households, students).
- Nowadays, decision makers have access to more information so economic policies can be personalized, by accounting for individual's preferences.

Introduction ○●○○○○	Incentive Policy	Algorithm 00	Application to Mode Choice	Conclusion 00
Introduc	ction			
Example: No	Policy			

		Car	Walk
Alico	Indiv. value	3	2
Allce	CO ₂ emissions	1	0
Rob	Indiv. value	4	2
DOD	CO_2 emissions	2	0

- Without policy, Alice and Bob choose the alternative with the largest individual value (Car for both).
- To minimize CO₂ emissions, they should both choose to walk.
- Public expenses: 0; CO₂ emissions: 3.

Introduction 000000	Incentive Policy	Algorithm 00	Application to Mode Choice	Conclusion 00
Introduc	tion			

Example: Flat Subsidy

		Car	Walk
Alico	Indiv. value	3	2 + 2
Allce	CO ₂ emissions	1	0
Bob	Indiv. value	4	2 + 2
DOD	CO_2 emissions	2	0

- With a **flat subsidy** of 2 € for walking, both Alice and Bob switch to walking.
- Public expenses: 4; CO₂ emissions: 0.

Introduction 000●00	Incentive Policy	Algorithm 00	Application to Mode Choice	Conclusion

Introduction

Example: Personalized Incentives

		Car	Walk
Alico	Indiv. value	3	2 + 1
Allce	CO ₂ emissions	1	0
Rob	Indiv. value	4	2 + 2
DOD	CO_2 emissions	2	0

- With a **personalized incentive policy** (1 € for Alice and 2 € for Bob), they both switch to walking.
- The CO₂ emissions are the same than with a flat subsidy but the expenses decreased by 1 €.
- Public expenses: 3; CO₂ emissions: 0.

Introduction 000000	Incentive Policy	Algorithm 00	Application to Mode Choice	Conclusion
Introduc	ction			
Contribution	S			

- We show that the problem of finding an optimal personalized incentive policy, in a discrete-choice framework, is a Multiple-Choice Knapsack Problem (MCKP).
- We propose a **polynomial-time greedy algorithm** to find a near-optimal policy and we analyze its analytical and economic **properties**.
- Numerical application to mode choice for Lyon (France).

Introduction 00000●	Incentive Policy	Algorithm 00	Application to Mode Choice	Conclusion 00
Introdu	ction			
Literature				

Personalized policy in transportation:

- Araldo, Andrea, et al. "System-level optimization of multi-modal transportation networks for energy efficiency using personalized incentives: Formulation, implementation, and performance." *Transportation Research Record* 2673.12 (2019): 425-438.
- Zhu, Xi, et al. "Personalized incentives for promoting sustainable travel behaviors." *Transportation Research Part C: Emerging Technologies* 113 (2020): 314-331.

Application of Multiple-Choice Knapsack Problem to economics:

• Colorni, Alberto, et al. "Rethinking feasibility analysis for urban development: A multidimensional decision support tool." *International Conference on Computational Science and Its Applications.* Springer, Cham, 2017.

Introduction	Incentive Policy	Algorithm	Application to Mode Choice	Conclusion
000000	●00	00		00

Incentive Policy

Multiple-Choice Knapsack Problem

- Input: set of items, with a weight and a value, that are classified in different classes; knapsack with a given weight limit.
- One item from each class is in the knapsack.
- Goal: maximize the value of the items in the knapsack, subject to the weight constraint.

Introduction 000000	Incentive Policy 0●0	Algorithm 00	Application to Mode Choice	Conclusion
Incentiv	ve Policy			

Personalized Incentive Policy

- Input: set of transportation modes, with an individual value and CO₂ emissions, for different individuals; regulator with a given budget limit.
- The regulator uses incentives to induce individuals to choose **one transportation mode**.
- Goal: minimize the CO₂ emissions of the modes chosen, subject to the budget constraint.

Introduction 000000	Incentive Policy	Algorithm 00	Application to Mode Choice	Conclusion 00
Incentiv	e Policy			
Assumptions				

- **Fixed congestion:** the individual values are independent from the transportation mode chosen by the other individuals.
- Independent CO₂ emissions: the CO₂ emissions are independent from the transportation mode chosen by the other individuals.
- **Perfect information:** the regulator knows perfectly the individual values and the CO₂ emissions for any available transportation mode.

Introduction 000000	Incentive Policy	Algorithm ●○	Application to Mode Choice	Conclusion 00
Algorithr	n			
Greedy Algorit	:hm			

- We propose a **polynomial-time greedy algorithm**, extending Kellerer et al. (2004)'s algorithm.
- The algorithm returns the **individual incentives** and the **CO**₂ **emissions reduction**, **given a budget**.
- It also computes the **Maximum Social Welfare Curve** (CO₂ reduction achievable for a range of budgets).

Introduction 000000	Incentive Policy 000	Algorithm ⊙●	Application to Mode Choice	Conclusion 00
Algorith	ım			
Algorithm P	roperties			

- **Upper bound:** solution is boundedly close to the optimum.
- **Anytime algorithm:** solution is optimal for the budget spent at any iteration.
- **Diminishing returns:** social welfare is concave with the expenses of the regulator.

Introduction 000000	Incentive Policy 000	Algorithm 00	Application to Mode Choice	Conclusion

Application to Mode Choice Data

- Census data for 220k individuals in Lyon's area (France): home, workplace, transportation mode for commuting, socio-demographic variables.
- Analysis of the transportation mode chosen for **home-work trips**.
- Travel times data: OpenStreetMap and HERE.
- **5 transportation modes:** car, public transit, walking, cycling and motorcycle.

ntroduction	Incentive Policy	Algorithm	Application to Mode Choice	Conclusion
200000	000	00		00

Application to Mode Choice

Intrinsic Utilities and Social Indicators

- Individual values are estimated from a Multinomial Logit model.
- CO₂ emissions are computed with ADEME data.

Daily CO ₂ emissions	595.26 tons of CO_2
Yearly CO_2 emissions (200 days)	119050 tons of CO_2
Average yearly individual CO ₂ emissions	0.54 tons of CO_2

Introduction	Incentive Policy	Algorithm	Application to Mode Choice	Conclusion
000000	000	00	००●०	00
Δ				

Application to Mode Choice Results

- Budget is set to 1800 € (per day).
- Only 1.57 % of individuals receive incentives.
- CO_2 reduction: 18 tons per day (3 % of total emissions).
- Average regulator's cost of CO₂: 100 € per ton.

000000 000 00 00 000 00	ntroduction	Incentive Policy	Algorithm	Application to Mode Choice	Conclusion
	000000			0000	

Application to Mode Choice Results

- 1.163 % of individuals are switching from car to public transit.
- The car share decreases from 57.326 % to 55.843 %.

000000	OOO	OO Algorithm	OOOO	Conclusion ●0
Conclus	ion			
Summary				

- Personalized-incentive policy boundedly close to optimum can be computed with **MCKP** algorithms.
- The policy shows **diminishing returns** behavior.
- Decrease of 3 % of the CO₂ emissions, by impacting only 1.57 % of individuals.

Introduction 000000	Incentive Policy	Algorithm 00	Application to Mode Choice	Conclusion ○●
Conclus	ion			
Future Work	S			

- Extend the model to **imperfect information** on the individual values, by computing **switching probabilities**.
- Account for **congestion** with an iterative procedure.

Contacts

- Lucas Javaudin: lucas.javaudin@cyu.fr
- Andrea Araldo: andrea.araldo@telecom-sudparis.eu
- André de Palma: andre.de-palma@cyu.fr