# Mode and Departure-Time Choice Estimates

Lucas Javaudin<sup>1</sup>, André de Palma<sup>1</sup>, Nathalie Picard<sup>2</sup>

<sup>1</sup>THEMA, CY Cergy Paris Université <sup>2</sup>BETA, Strasbourg University

> October 10, 2023 THEMA Applied Seminar

#### **Motivations**

What are the determinants of the mode of transportation and departure time chosen by the individuals for their trips?

Example of questions we want to answer:

- What is the minimum incentive amount that I must give you to convince you to switch from car to public transit?
- If road congestion decreases between 7AM and 8AM, will you leave at 07:50 instead of 08:00?
- If a road opening is decreasing your car travel time by 10 minutes, will you switch from public transit to car?

Application: evaluation of transport policies (low-emission zone, Grand Paris Express, public-transit subsidies, etc.)

#### Desired Arrival Time

- Desired arrival time  $(t^*)$ : time at which the individual would choose to arrive if travel time was null.
- Desired arrival time can be different from *actual arrival time* (trade-off between travel time and schedule delay).
- Desired arrival times are unknown and highly heterogeneous.

#### **Utility**

In the standard  $\alpha$ - $\beta$ - $\gamma$  model (Vickrey, 1969; Arnott, de Palma, Lindsey, 1990s), utility for mode i and departure time  $t_d$  is:

$$u(i, t_d) = -\underbrace{c_i}_{\text{Constant}} - \underbrace{\alpha_i \cdot tt_i(t_d)}_{\text{Travel cost}} - \underbrace{\beta \cdot [t^* - t_d - tt_i(t_d)]_+}_{\text{Early penalty}} - \underbrace{\gamma \cdot [t_d + tt_i(t_d) - t^*]_+}_{\text{Late penalty}}$$

- $c_i$ : mode-specific constant cost
- $\alpha_i$ : value of time for mode i
- $tt_i(t_d)$ : travel time when leaving at time  $t_d$  with mode i
- $\beta$ : penalty for arriving early
- $\gamma$ : penalty for arriving late
- t\*: desired arrival time
- $[x]_{\perp} = \max(x,0)$

#### Part I: Desired arrival-time distribution

In  $\alpha$ - $\beta$ - $\gamma$  the model, any individual with a constant travel time will choose to arrive exactly at his / her desired arrival time:

- If my travel time is constant, I choose a departure time such that I arrive at my
  desired arrival time.
- If my travel time is time-dependent, I might choose to arrive early / late to reduce travel time.

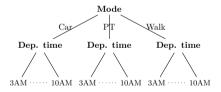
We estimate the distribution of  $t^*$  in the population from the distribution of arrival times in the subpopulation of individuals with a constant travel time (all walk trips and car trips without congestion).

### Part II: Bayesian estimates

After estimating the distribution of  $t^*$ , we are able to estimate the parameters of interest (value of time, early and late penalties, etc.) using **Bayesian estimates** and a **travel** survey.

We estimate a "Mixed discrete-continuous Nested Logit model":

- Stage 1: mode choice (Multinomial Logit)
- Stage 2: departure-time choice (Continuous Logit)
- Fixed coefficients: mode-specific constants and values of time, early and late penalties
- Random coefficients: desired arrival times (but distribution is known, from Part I)



#### Literature review

#### Departure-time choice:

- $\alpha$ - $\beta$ - $\gamma$  model using the work start time as desired arrival time (Small, 1982; Thorauge et al., 2021)
- Schedule-delay represented by time-specific constants (Zeid et al., 2006; Popuri et al., 2008; Lemp and Kockelman, 2010; Lemp et al., 2010)
- Kim and Moon, 2022: desired arrival times are estimated using a machine learning method using the arrival times of individuals facing no congestion

#### Joint mode and departure-time choice:

- Joint discrete-continuous model with time budget constraint (Habib, 2013; Jokubauskaité, 2019)
- Mixed Nested Logit model with stated preferences (Bajwa et al., 2008)

#### Results

- The desired arrival times  $t^*$  can be mostly explained by profession category and workplace area.
- Value of time is the smallest for public transit and largest for walk.
- Walking is preferred to car and public transit for trips smaller than 1.3 km.
- When there is no congestion, the odd ratio of choosing car over public transit does not depend on trip distance.

Introduction

Data

Part I: Desired arrival-time distribution

Part II: Bayesian estimates

Conclusion

Introduction

Data

Part I: Desired arrival-time distribution

Part II: Bayesian estimates

Conclusion

### Enquête Globale Transport (EGT)

- 2010 transport survey for Île-de-France (Paris' region, with 12 millions inhabitants)
- 14855 households, 35175 individuals surveyed
- Observations: households characteristics, individual characteristics, trips of the previous day (including, mode, departure time, purpose)



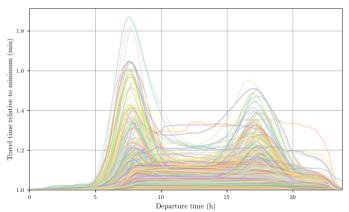
#### Car Travel-Time

- Source: HERE, Q1 2016
- Historical link-level speed for 15-minute intervals (typical day)
- 977 618 links in the Île-de-France area (18.51 % with a non-constant travel time)
- OD-level travel-time functions computed using a routing algorithm (Time-dependent Contraction Hierarchies)
- Link-level and OD-level travel time functions are piecewise linear functions

OLS regression

#### Car Travel-Time

Random sample of 500 OD pairs.



### Public-Transit / Walk Travel-Time

#### Public transit:

- Source: OpenStreetMap (walking network) and IDF Mobilités GTFS (timetables)
- Methodology: Least cost path given by OpenTripPlanner (with departure time 2023-06-26 at 8AM)
- 1937 lines, 53 199 stops
- Public-transit travel time is assumed to be constant with departure time (for now)

▶ OLS regression

#### Walk

- Source: OpenStreetMap
- Methodology: Distance of the shortest path given by a routing algorithm
- Walking travel time is computed assuming a speed of  $4.14\,\mathrm{km/h}$  (estimated speed based on observed travel times)



Introduction

Data

Part I: Desired arrival-time distribution

Part II: Bayesian estimates

Conclusion

### Scope

- Home-to-work trips
- Modes: car (as a driver alone), public transit, walk
- Time window: 3AM 10AM
- Sample size: 7881 trips

# Basic Principle

Claim: When travel-time function is constant, the individual arrives at his / her  $t^*$ .

$$u(t_d) = -c - \alpha \cdot tt(t_d) - \beta \cdot [t^* - t_d - tt(t_d)]_+ - \gamma \cdot [t_d + tt(t_d) - t^*]_+$$
if  $tt(t_d) = \bar{t}t \implies \underset{t_d}{\operatorname{arg max}} u(t_d) = t^* - \bar{t}t$ 

Consequence: For individual facing no congestion, their arrival time reveal their  $t^*$  value.

## Basic Principle

Claim: When travel-time function is constant, the individual arrives at his / her  $t^*$ .

$$u(t_d) = -c - \alpha \cdot \bar{t}t - \beta \cdot [t^* - t_d - \bar{t}t]_+ - \gamma \cdot [t_d + \bar{t}t - t^*]_+$$
if  $tt(t_d) = \bar{t}t \implies \underset{t_d}{\operatorname{arg max}} u(t_d) = t^* - \bar{t}t$ 

Consequence: For individual facing no congestion, their arrival time reveal their  $t^*$  value.

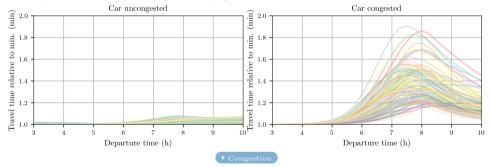
#### Trip categories

Three trip categories are analyzed:

• Group A: Walk (643 trips)

• Group B: Car uncongested (1169 trips)

• Group C: Car congested (1169 trips)



### Trip categories

(A: Walk, B: Car uncongested, C: Car congested)

- Desired arrival time  $t^*$  distribution (unobserved) is  $F_A$ ,  $F_B$ ,  $F_C$
- Arrival time  $t_a$  distribution (observed) is  $G_A$ ,  $G_B$ ,  $G_C$
- Goal: estimate  $F_A$ ,  $F_B$ ,  $F_C$
- Previous claim:  $F_A = G_A$ ,  $F_B = G_B$
- Can we infer  $F_C$  from  $F_A$  and  $F_B$ ?

### Endogeneity

Variables that could explain  $t^*$ :

- Occupation
- Workplace
- Number of children
- Gender
- ...

All these variables also explain mode choice: Desired arrival time distribution is mode-dependent  $(F_A \neq F_B)$ 

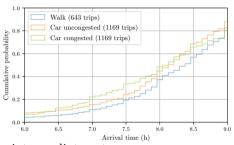
### Comparing distribution

- The **two-sample Kolmogorov-Smirnov test** can be used to compare two samples and assert if they come from the same probability distribution.
- Null hypothesis: "The values in the two samples are drawn from the same probability distribution".

## All trips, by mode

The null hypothesis is always rejected at the 1% level (the distributions are different).

|                         | KS statistic | p-value |
|-------------------------|--------------|---------|
| Walk / Car uncong.      | 0.1308       | 0.0000  |
| Walk / Car cong.        | 0.1439       | 0.0000  |
| Car cong. / Car uncong. | 0.0915       | 0.0001  |

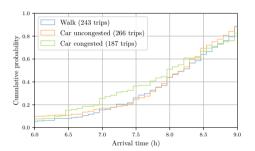


If we split population by profession category (employee, intermediate category, upper category, blue-collar workers), are the arrival-time distributions still explained by mode choice?

## **Employees**

The null hypothesis that Walk and Car uncongested have the same distribution **cannot** be rejected.

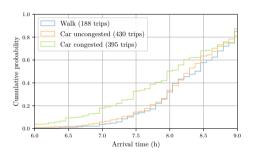
|                         | KS statistic | p-value |
|-------------------------|--------------|---------|
| Walk / Car uncong.      | 0.0678       | 0.5709  |
| Walk / Car cong.        | 0.1151       | 0.1096  |
| Car cong. / Car uncong. | 0.1206       | 0.0738  |



### Intermediate category

The null hypothesis that Walk and Car uncongested have the same distribution **cannot** be rejected.

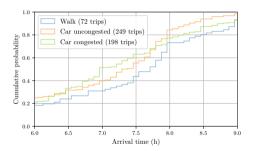
|                         | KS statistic | p-value |
|-------------------------|--------------|---------|
| Walk / Car uncong.      | 0.0711       | 0.4957  |
| Walk / Car cong.        | 0.2171       | 0.0000  |
| Car cong. / Car uncong. | 0.1830       | 0.0000  |



#### Blue-Collar Workers

The null hypothesis that Walk and Car uncongested have the same distribution **cannot** be rejected.

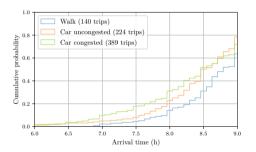
|                         | KS statistic | p-value |
|-------------------------|--------------|---------|
| Walk / Car uncong.      | 0.1735       | 0.0602  |
| Walk / Car cong.        | 0.2210       | 0.0097  |
| Car cong. / Car uncong. | 0.1176       | 0.0856  |



### Upper category

The null hypothesis that Walk and Car uncongested have the same distribution can be rejected.

|                         | KS statistic | p-value |
|-------------------------|--------------|---------|
| Walk / Car uncong.      | 0.2071       | 0.0010  |
| Walk / Car cong.        | 0.2213       | 0.0001  |
| Car cong. / Car uncong. | 0.0970       | 0.1269  |



#### Upper category: By workplace area

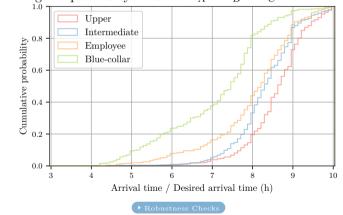
Average arrival time (trip count)

|                 | Paris     | Inner suburbs | Outer suburbs |
|-----------------|-----------|---------------|---------------|
| Walk            | 9:10 (70) | 8:50 (51)     | 8:38 (29)     |
| Car uncongested | 9:26(3)   | 8:46 (51)     | $8:34\ (185)$ |
| Car congested   | 8:45 (51) | $8:32\ (222)$ | 8:38 (127)    |
| Average         | 8:56      | 8:37          | 8:34          |

Conclusion: Ideally,  $t^*$  distributions should be split by profession category and workplace area but sample size is too small.

### **Summary**

Conclusion: After controlling by profession category and workplace area, the desired arrival time is no longer explained by mode  $\Rightarrow F_A = F_B = F_C$ 



Introduction

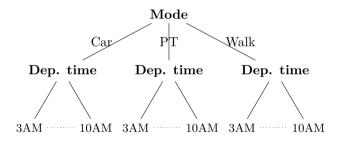
Data

Part I: Desired arrival-time distribution

Part II: Bayesian estimates

Conclusion

#### **Decision Tree**



### Likelihood (lower level)

- Observed choice for individual n:  $y_n = \{i, [\underline{t}, \overline{t}]\}$ , where i is the mode chosen and  $[\underline{t}, \overline{t}]$  is the departure-time interval chosen.
- Let  $\theta = \{c, \alpha, \beta, \gamma, \mu\}$  be the set of parameters to be estimated.
- The likelihood to observe departure-time interval  $[\underline{t}, \overline{t}]$  given that mode i is chosen is (Continuous Logit assumption)

$$L_n^{\mathrm{dep}}([\underline{t},\overline{t}];i,\theta,t_n^*) = \frac{\int\limits_{\underline{t}}^{\overline{t}} e^{u_n(t;i,\theta,t_n^*)} \,\mathrm{d}\,t}{\int\limits_{t_0}^{t_{M+1}} e^{u_n(t;i,\theta,t_n^*)} \,\mathrm{d}\,t}$$

where

$$u_n(t; i, \theta, t_n^*) = \frac{-c_i - \alpha_i \cdot tt_{n,i}(t) - \beta \cdot [t_n^* - t - tt_{n,i}(t)]_+ - \gamma \cdot [t + tt_{n,i}(t) - t_n^*]_+}{\mu_i}.$$

### Likelihood (upper level)

• The log-sum of the departure-time choice for mode i is

$$V_{n,i}(\theta, t_n^*) = \mu_i \ln \int_{t_0}^{t_{M+1}} e^{u_n(t; i, \theta, t_n^*)} dt + \mu_i EC$$

where  $EC \approx 0.5772$  is the Euler-Mascheroni constant.

The likelihood to observe mode i is (Multinomial Logit assumption)

$$L_n^{\text{mode}}(i;\theta,t_n^*) = \frac{e^{V_{n,i}(\theta,t_n^*)}}{\sum_j e^{V_{n,j}(\theta,t_n^*)}}.$$

• The likelihood to observe the choice  $y_n = \{i, [\underline{t}, \overline{t}]\}$  is

$$L_n(y_n; \theta, t_n^*) = L_n^{\text{mode}}(i; \theta, t_n^*) \cdot L_n^{\text{dep}}([\underline{t}, \overline{t}]; i, \theta, t_n^*).$$

#### Likelihood

Lucas Javaudin

- The previous likelihood is conditional on  $t_n^*$ .
- The unconditional likelihood is

$$L_n(y_n; \theta) = \int L_n(y_n; \theta, t^*) f(t^*) dt^*$$

where f is the probability distribution of  $t^*$ .

• Maximum Likelihood is not feasible, instead we can use Maximum Simulated Likelihood or **Bayesian estimates**.

#### Bayesian estimates

Goal: Find the estimates of  $\theta = \{c, \alpha, \beta, \gamma, \mu\}$  and  $t^* = \{t_n^*\}_n$  which best "explain" the observed choices  $y = \{y_n\}_n$ .

- Density of the prior distribution of  $\theta$  and  $t^*$  is  $k(\theta, t^*)$  (assumed to be diffuse).
- Density of the posterior distribution is

$$K(\theta, \boldsymbol{t^*}; \boldsymbol{y}) \propto \prod_n L_n(y_n; \theta, t_n^*) f(t_n^*) k(\theta, \boldsymbol{t^*}).$$

Values are drawn from the posterior distribution by combining Gibbs sampling and Metropolis-Hastings algorithm.

▶ Details

### Results: Intermediate category

| Variable                             | Estimate | CI [1 %, 99 %] |
|--------------------------------------|----------|----------------|
| Const:Public_transit $c_{\text{PT}}$ | -0.40    | [-0.65, -0.15] |
| Const:Walk $c_{\text{Walk}}$         | -2.76    | [-3.38, -2.15] |
| VOT:Car $\alpha_{\rm Car}$           | 3.47     | [2.91, 4.03]   |
| VOT:Public_transit $\alpha_{PT}$     | 2.18     | [1.80, 2.60]   |
| VOT:Walk $\alpha_{Walk}$             | 8.02     | [6.66, 9.48]   |
| Early penalty $\beta$                | 0.97     | [0.82, 1.14]   |
| Late penalty $\gamma$                | 0.82     | [0.73, 1.06]   |
| Scale $\mu$                          | 0.16     | [0.13,  0.20]  |

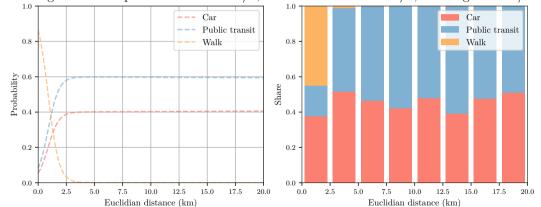
▶ Convergence

## Utility as function of distance

Average observed speeds: Car 20.37 km/h, Public-transit 12.75 km/h, Walking 3.56 km/h Car Public transit 0.8 -Walk -100.6 -Utility Share -200.4-30Car 0.2 -Public transit Walk 0.0 10.0 17.5 2.5 7.5 12.5 17.5 0.0 2.5 5.0 12.5 15.0 20.0 0.0 5.0 10.0 15.0 20.0 Euclidian distance (km) Euclidian distance (km)

## Mode-choice probabilities as function of distance

Average observed speeds: Car 20.37 km/h, Public-transit 12.75 km/h, Walking 3.56 km/h



Introduction

Data

Part I: Desired arrival-time distribution

Part II: Bayesian estimates

Conclusion

## **Takeaways**

We estimate the  $\mathbf{t}^*$  distribution using *arrival-time* distribution of individuals facing no congestion.

• When controlling by *profession category* and *workplace area*, the desired arrival-time distribution cannot be explained by mode (walk vs uncongested car).

We estimate preference parameters using a Mixed discrete-continuous Nested Logit model (for intermediate categories).

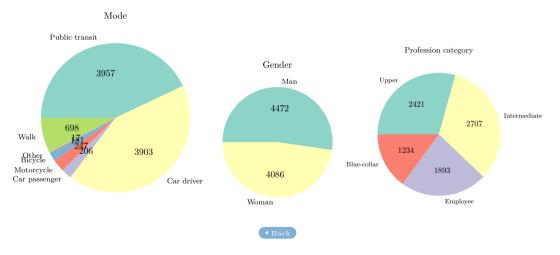
- Value of time is the smallest for public transit and largest for walk.
- Walking is preferred to car and public transit for trips smaller than 1.3 km.
- When there is no congestion, trip distance does not affect the choice between car and public transit.

#### Future works

- Fuel cost / public-transit fare
- Evening commute (desired departure time from origin)
- Trip chaining (with  $t^*$  at intermediate stop and at destination)
- Car ownership
- Day-to-day travel-time variability

# Thank you

# Characteristics of home-to-work trips



#### Car Travel-Time

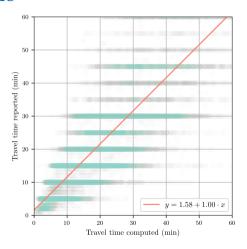
Reported travel time for car trips in the travel survey can be well predicted by the computed travel time with HERE data ( $R^2 = 66\%$ ).

| Dep. Varia     | able:              | EGT tt<br>OLS            | R-squ<br>F-stat     |                           | 8.               | 0.664 $274e+04$ |
|----------------|--------------------|--------------------------|---------------------|---------------------------|------------------|-----------------|
| No. Obser      | vations:           | 41934                    | Prob (F-statistic): |                           | tic):            | 0.00            |
|                | $\mathbf{coef}$    | $\operatorname{std}$ err | $\mathbf{t}$        | $\mathbf{P}> \mathbf{t} $ | [0.025]          | 0.975]          |
| cst<br>HERE tt | $1.5758 \\ 1.0003$ | $0.087 \\ 0.003$         | 18.061<br>287.650   | $0.000 \\ 0.000$          | $1.405 \\ 0.993$ | 1.747 $1.007$   |

Note: Travel-time penalties at intersections are calibrated to reach a slope close to 1.



#### Car Travel-Time



**▼**Back

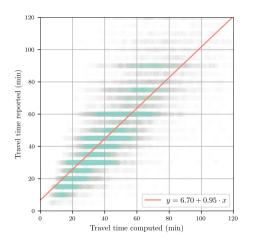
## Public-Transit Travel-Time

Reported travel time for public-transit trips in the travel survey can be well predicted by the computed travel time with OpenTripPlanner ( $R^2 = 65\%$ ).

| Dep. Var | iable:          | EGT tt                   | R-squ                            | uared:                      |                    | 0.653       |
|----------|-----------------|--------------------------|----------------------------------|-----------------------------|--------------------|-------------|
| Model:   |                 | OLS                      | $\mathbf{F}\text{-}\mathbf{sta}$ | tistic:                     |                    | 3.472e + 04 |
| No. Obse | ervations       | : 18453                  | $\operatorname{Prob}$            | (F-stati                    | $\mathrm{stic})$ : | 0.00        |
|          | $\mathbf{coef}$ | $\operatorname{std}$ err | $\mathbf{t}$                     | $\mathbf{P} >  \mathbf{t} $ | [0.025]            | 0.975]      |
|          | 6.7029          |                          |                                  |                             |                    |             |



#### Public-Transit Travel-Time

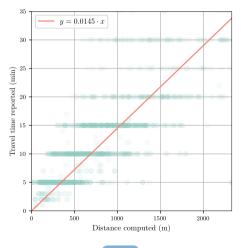


## Walk Travel-Time

Reported travel time for walking trips in the travel survey can be well predicted by the computed distance with OpenStreetMap.

| Dep. Varia | able:           | EGT tt                   | F-stat                | istic:                        | 1.               | 313e + 04 |
|------------|-----------------|--------------------------|-----------------------|-------------------------------|------------------|-----------|
| Model:     |                 | OLS                      | $\operatorname{Prob}$ | $(\mathbf{F\text{-}statis})$  | $\mathrm{tic}):$ | 0.00      |
| No. Obser  | ${f vations:}$  | 2141                     |                       |                               |                  |           |
|            | $\mathbf{coef}$ | $\operatorname{std}$ err | t                     | $\mathbf{P}$ > $ \mathbf{t} $ | [0.025]          | 0.975]    |
| OSM dist   | 0.0145          | 0.000                    | 114.571               | 0.000                         | 0.014            | 0.015     |

#### Walk Travel-Time

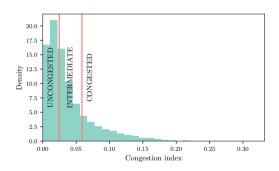


# Congestion Index

For each OD pair, we have a travel-time function defined by breakpoints  $\{(td_i, tt_i)\}_i$ . We compute a congestion index as

$$c = \sigma_{tt}/tt_0,$$

where  $\sigma_{tt} = \sqrt{(1/n)\sum_{i}(tt_i - \bar{t}t)^2}$  is the standard-deviation of the travel times and  $tt_0 = \min_i tt_i$  is the minimum travel time.



Car trips are split in three categories of equal size based on the congestion index (uncongested, intermediate and congested).

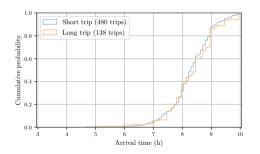
## Robustness check: travel time

Comparing long / short trips (intermediate category; walk and car uncongested only).

Long trip: Travel time is longer than 30 minutes.

The null hypothesis that Short trip and Long trip have the same distribution **cannot** be rejected.

|              | KS statistic | p-value |
|--------------|--------------|---------|
| Short / Long | 0.0923       | 0.2453  |





## Robustness check: distance

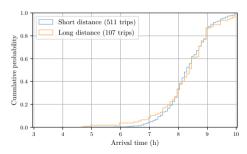
Comparing long / short distance trips (intermediate category; walk and car uncongested only).

Long distance: Euclidian distance between origin and destination is greater than 10

kilometers.

The null hypothesis that Short distance and Long distance have the same distribution cannot be rejected.

|              | KS statistic | p-value |
|--------------|--------------|---------|
| Short / Long | 0.0588       | 0.8531  |



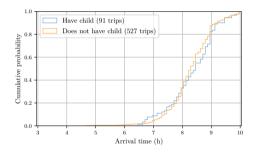


## Robustness check: children

Comparing trips of people with / without child (intermediate category; walk and car uncongested only).

The null hypothesis that Male and Female have the same distribution cannot be rejected.

|                  | KS statistic | p-value |
|------------------|--------------|---------|
| Child / No child | 0.0914       | 0.4662  |



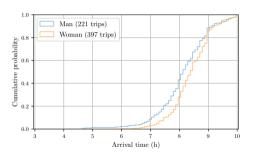


# Robustness check: gender

Comparing trips of men / women (intermediate category; walk and car uncongested only).

The null hypothesis that *Man* and *Woman* have the same distribution **can** be rejected.

|             | KS statistic | p-value |
|-------------|--------------|---------|
| Man / Woman | 0.1469       | 0.0029  |





## Gibbs Sampling

1. Draw  $(t_n^*)^{\tau+1}$ ,  $\forall n$  given  $\theta^{\tau} \to \text{Metropolis-Hastings}$ 

$$K(t_n^*|\theta; y_n) \propto L_n(y_n|\theta; t_n^*) f(t_n^*), \quad \forall r$$

2. Draw  $\theta^{\tau+1}$  given  $(t_n^*)^{\tau+1} \to \text{Metropolis-Hastings}$ 

$$K(\theta|\boldsymbol{t^*};\boldsymbol{y}) \propto \prod_n L_n(y_n|\theta;t_n^*)$$

Uniform random values are drawn to initialize the first iteration. Each simulation consists in 50 000 iterations of Gibbs sampling.



## Results: Convergence of simulation

