Bridging the Gap between Theory and

Simulation in the Bottleneck Model

Lucas Javaudin, André de Palra
THEMA, CY Cergy Paris Université
ITEA 2024




Outline

1. Transport Simulators: Gap to the Theory
2. Methodology

3. Results

4. Large-Scale Simulations

5. Conclusion



Transport Simulators:
Gap to the Theory




The Bottleneck Model in Simulators: Inspiration

e Bottleneck model (Vickrey, 1969; Arnott, de Palma, Lindsey, 1990s):
single-road, alpha-beta-gamma generalized cost

e Transport simulators: tools to evaluate transport policies in large-
scale scenarios

e MATSim and METROPOLIS use bottleneck congestion: flows are
limited by road capacity

e SimMobility and METROPOLIS use alpha-beta-gamma generalized
cost with departure-time choice

e Apart from these inspirations, transport simulators are complex
black boxes

e To what extent are their results in line with theory?



¢ Model in Simulators: Inspiration

-
:—
(P
0
C
(="
=
(L‘
(L‘
Y
ey, —

e Bottleneck model (Vickrey, 1969; Arnott, de Palma, Lindsey, 1990s):
single-road, alpha-beta-gamma generalized cost

e Transport simulators: tools to evaluate transport policies in large-
scale scenarios



¢ Model in Simulators: Inspiration

—
:—
(P
.
QO
g
i
h
tﬁ
h
(!
t‘—

e Bottleneck model (Vickrey, 1969; Arnott, de Palma, Lindsey, 1990s):
single-road, alpha-beta-gamma generalized cost

e Transport simulators: tools to evaluate transport policies in large-
scale scenarios

e MATSim and METROPOLIS use bottleneck congestion: flows are
limited by road capacity



¢ Model in Simulators: Inspiration

—
—-
(P
.
-
g
i
(P
Iﬁ
(L
(3
S

e Bottleneck model (Vickrey, 1969; Arnott, de Palma, Lindsey, 1990s):
single-road, alpha-beta-gamma generalized cost

e Transport simulators: tools to evaluate transport policies in large-
scale scenarios

e MATSim and METROPOLIS use bottleneck congestion: flows are
limited by road capacity

e SimMobility and METROPOLIS use alpha-beta-gamma generalized
cost with departure-time choice



¢ Model in Simulators: Inspiration

—
—-
(P
.
QO
| g
| |
(P
lﬁ
(L
|
S

e Bottleneck model (Vickrey, 1969; Arnott, de Palma, Lindsey, 1990s):
single-road, alpha-beta-gamma generalized cost

e Transport simulators: tools to evaluate transport policies in large-
scale scenarios

e MATSim and METROPOLIS use bottleneck congestion: flows are
limited by road capacity

e SimMobility and METROPOLIS use alpha-beta-gamma generalized
cost with departure-time choice

e Apart from these inspirations, transport simulators are complex
black boxes



¢ Model in Simulators: Inspiration

—
—-
(P
.
-
| g
| |
(P
lﬁ
(L
|
S

e Bottleneck model (Vickrey, 1969; Arnott, de Palma, Lindsey, 1990s):
single-road, alpha-beta-gamma generalized cost

e Transport simulators: tools to evaluate transport policies in large-
scale scenarios

e MATSim and METROPOLIS use bottleneck congestion: flows are
limited by road capacity

e SimMobility and METROPOLIS use alpha-beta-gamma generalized
cost with departure-time choice

e Apart from these inspirations, transport simulators are complex
black boxes

e To what extent are their results in line with theory?



Analytical Model vs Simulation

Analytical model Simulation

Population Continuum of individuals Discrete agents

Choice model Deterministic Random-utility model

Behavioral representation Continuous, implicitly-defined Piecewise-linear, numerical approximation
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Attempts at Simulating the Bottleneck Model

e Otsubo and Rapoport (2008)
= Discrete agents and mixed-strategy equilibrium

= "We report significant discrepancies in travel costs and distributions
of departure time between the two solutions that slowly decrease as
the number of commuters increases.”

= Methodology limited to very simple networks



Attempts at Simulating the Bottleneck Model

e Otsubo and Rapoport (2008)
= Discrete agents and mixed-strategy equilibrium

= "We report significant discrepancies in travel costs and distributions
of departure time between the two solutions that slowly decrease as
the number of commuters increases.”

= Methodology limited to very simple networks
e Guo, Yang, Huang (2018)
= Continuum of individuals, deterministic choice model

s "We theoretically prove that, in the simplest standard bottleneck
model [...], a dynamic user equilibrium (DUE) cannot be reached
through a day-to-day evolution process of travelers’ departure rate"
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Contrioutions

We propose a methodology able to replicate the analytical results
of the bottleneck model

Framework: discrete agents, random-utility model

Solution:

= Continuous departure-time choice (de Palma, Ben-Akiva, Lefévre
and Litinas, 1983)

s Continuous-time model

= Optimal at each iteration

This methodology is then extended into a large-scale transport
simulator: METROPOLIS2
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The Bottleneck Model

Single-road network:

Bottleneck of capacity s

l

Origin A » // Destination B
Free-flow travel time ¢

Travel time from A to B is

o Q(t +t)
S

with () the length of the bottleneck queue at time .
N discrete agents are traveling from Origin A to Destination B

Utility (= generalized cost) is given by

V(it)=—a-Tt) = -t" =t =T({)]; —v-t+T()—t"];
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Single-road network:

Bottleneck of capacity s

l

Origin A : 2 » // Destination B
Free-How travel time

Travel time from A to B is

o Q(t +t)
S

with () the length of the bottleneck queue at time ¢.
N discrete agents are traveling from Origin A to Destination B

Utility (= generalized cost) is given by

V(t)=—a-T(t) = B[t —t—T()], —v- [t +T(t) '],
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Bottleneck Model: Departure-Time Choic

(P

e Agents choose the departure time maximizing deterministic

Utlllty (Arnott, de Palma and Lindsey, 1990) A —— Deterministic
[ —— Stochastic (= 0.1)
td — arg max V(t) ——— Stochastic (u = 0.2)

——— Stochastic (u = 0.5)

Stochastic (u = 1)
Departure time

Departure rate

| .




ttittty{ArnottdePatmaand-Hndsey; 19961 [ A —— Deterministic

[ —— Stochastic (u = 0.1)
td — al'g IMax V(t) . — Stochastic (= 0.2)
@ ——— Stochastic (u = 0.5)
. . .. . S Stochastic (u = 1)
e Agents choose departure time ¢ with probability (Continuous 2
Logit, de Palma, Ben-Akiva, Lefévre and Litinas, 1983): g \&_

(0 eV(t)/u
+) — k
P ( )/'U’dT

tO Departure time
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T'ne Bottleneck Model: Departure-Time Choice

ttitity(ArrottdePatmaandtndsey 19963 1% —— Deterministic
' —— Stochastic (= 0.1)
td — arg max V(t) ) — Stochastic (u = 0.2)
= ——— Stochastic (u = 0.5)
) ) . . < Stochastic (u = 1)
e Agents choose departure time ¢ with probability (Continuous £
Logit, de Palma, Ben-Akiva, Lefévre and Litinas, 1983): gf \L
) eV (t)/u g
p(t) = —
t eV(T)/.UdT
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e Fixed-point problem: p(t) <> V()
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ttitity(ArrottdePatmaandtndsey 19963 1% —— Deterministic
' —— Stochastic (= 0.1)
td — arg max V(t) ) — Stochastic (u = 0.2)
= ——— Stochastic (u = 0.5)
) ) . . < Stochastic (u = 1)
e Agents choose departure time ¢ with probability (Continuous £
Logit, de Palma, Ben-Akiva, Lefévre and Litinas, 1983): gf \&_
) eV (t)/u g.
p(t) = —
t eV(T)/NdT

Departure time
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e Fixed-point problem:p(t) <> V(t)

e Alternative interpretation: mixed strategy

10.3
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Demand Model

o Compute utility function from the expected travel-time function 1"

A

V(t)=—a-T(t) - B-[t* —t =T()+ —v-[t+T(t) - t'].
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Dermand Model

o Compute utility function from the expected travel-time function 1"

A

V(t)=—a-T(t) — B[t —t - T(W)]s —v- [t + T(t) — ')

e Compute the departure-time probabilities from the Continuous Logit formula:

ev(t)/ﬂ

t) = —
p(t) ' eV (Mndr

e Draw departure times using inverse transform sampling
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supply Model

e An event-based modelis used to simulate the trips of all the agents, from origin to destination
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e To simulate a bottleneck of capacity s vehicles per time unit, the road outflow is blocked for
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supply Model

e An event-based model is used to simulate the trips of all the agents, from origin to destination
e To simulate a bottleneck of capacity s vehicles per time unit, the road outflow is blocked for

1 /s time units after each vehicle is crossing

e Example: bottleneck capacity 1800 vehicles / hour « closing time 2 seconds
e FIFO: The cars exit the bottleneck in the same order that they entered it

e Continuous time: It can work with very small or very large capacities
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Travel time T'(t)

Learning Model

e The travel-time function expected for the next iteration, 1, 1, depends on the simulated travel-time
function, I, and the expected travel-time function, I, of the current iteration.
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Travel time T'(t)

Learning Model

e The travel-time function expected for the next iteration, 1 1, depends on the simulated travel-time
function, 1., and the expected travel-time function, I}, of the current iteration.

e Exponential smoothing method:

A A

T.1 = AT, + (1 — N1,

with A € |0, 1], the smoothing factor.
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Travel time T'(t)

Learning Model

e The travel-time function expected for the next iteration, 1 1, depends on the simulated travel-time
function, 1., and the expected travel-time function, I}, of the current iteration.

e Exponential smoothing method:

A A

T.1 = AT, + (1 — N1,

with A € |0, 1], the smoothing factor.

e An equilibrium is reached when T,.i = T,

i = : = :
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| | |
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Results



simulations

N = 100, 000 agents

a=10%8/h,8 =~ =5%/h

t* =7:30a.m.

Free-flow travel time £/ = 30 seconds
Bottleneck capacity s = 150, 000 cars/ h
Smoothing factor A = 0.5
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METROPOLIS2: Large-Scale Supply Side

e Road network: arbitrary graph of nodes (intersections) and edges
(road links)

e Congestion: link-level bottleneck and speed-density function, queue
propagation (spillback)

e Vehicle types: headway, speed limits, road restrictions
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METROPOLIS2: Large-Scale Demand Side

e Mode choice: arbitrary number of modes (congested and
uncongested)

e Route choice: fastest route computed with a routing algorithm
(Contraction hierarchies)

e Trip chaining: arbitrary number of trips with exogenous activity
duration

o Utility function: function of travel time, departure time, arrival time
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e Mode choice: arbitrary number of modes (congested and
uncongested)

e Route choice: fastest route computed with a routing algorithm
(Contraction hierarchies)
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e We proposed a simulation methodology to solve some analytical models
e The methodology can be used to solve models which are too complex to
be derived analytically (e.g., toy network, heterogeneous t™*)

e The methodology can be extended into a large-scale transport simulator
with good convergence and small distance to equilibrium
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Heterogeneous desired arrival times
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