Lucas JAVAUDIN André DE PALMA

CY Cergy Paris University

ITEA June 17, 2022

Contents

- Introduction
- 2 METROPOLIS Dynamic Traffic Simulator
- 3 Circular City Application
- 4 Analytical Example
- Conclusion

Introduction •0000

Cities are creating car-free areas (or low-emission zones) in their city centers: area where no vehicle can enter, expect priority vehicles or buses

- Examples: Hamburg, Oslo, Madrid (Nieuwenhuijsen and Khreis, 2016, Nieuwenhuijsen et al., 2019)
- Main goal is to reduce air and noise pollution and to increase green spaces in the city center
- Impact on road traffic in the entire city

Research Question

Creating a car-free area implies a **reduction in the total capacity of the network**. Intuition suggests that **traffic congestion should increase**.

Braess Paradox: when the total capacity of the network decreases, traffic conditions can improve.

Can a Braess paradox occur when a car-free area is implemented?

Introduction

Impact on Traffic Congestion

Different reasons can explain the occurrence of a Braess paradox:

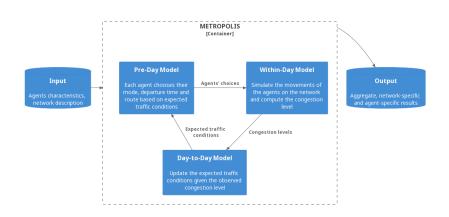
- car drivers shifting to other modes of transportation;
- car drivers making a detour and thus decreasing congestion in the vicinity of the car-free area;
- car drivers **shifting to another departure time** to avoid the period with highest congestion.

Introduction

- Simulations with METROPOLIS, a dynamic traffic simulator
- Circular city network from de Palma, Kilani and Lindsey (2005), with 33 nodes and 128 edges
- Creation of a 1-km wide car-free area in the city center
- Intuitions for the results with an analytical example

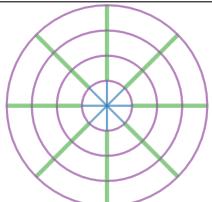
Introduction

Literature and Contributions


Impact of network capacity reduction on congestion:

- Braess (1968), Steinberg and Zangwill (1983): static models
- Arnott et al. (1993), Zhang et al. (2008), Lin and Lo (2009), Zhang and Zhang (2010): dynamic model with departure-time and route choice
- Thunig and Nagel (2016), Thunig et al. (2017): Braess paradox in a dynamic traffic simulator (exogenous departure time)
- This study: Braess paradox in a dynamic traffic simulator (endogenous departure time, medium- and large-size network)

Contents


- Introduction
- 2 METROPOLIS Dynamic Traffic Simulator
- 3 Circular City Application
- 4 Analytical Example
- Conclusion

- METROPOLIS is a dynamic, mesoscopic and multi-modal multi-agent simulator
- First version by de Palma, Marchal and Nesterov (1997)
- This work uses a new version, improving existing features (e.g., departure-time choice model, congestion model, route choice) and introducing new features (e.g., different vehicles, mode choice with arbitrary modes, public transit with in-vehicle congestion)

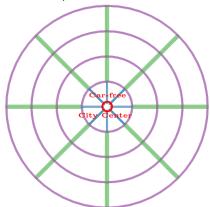


- Continuous departure-time choice based on Continuous Logit theory (Ben-Akiva and Watanatada, 1981)
- The route chosen is the fastest path on the time-dependent graph (Batz et al., 2013)
- Congestion on an edge is represented by speed-density functions (running part of the edge) and point bottlenecks (queuing part of the edge)
- Traffic conditions are updated according to an exponential learning process

	Purple	Green	Blue
Cap. (veh / h / lane) Speed limit	Infinite	2000 70 km/h	500 50 km/h
Lanes	1	2	1

- Same OD matrix as in de Palma, Kilani and Lindsey (2005).
- 33 origin or destination nodes.
- 264 000 car commuters (inc. 19 184 from / to the city center).

Population: Preferences


• **Generalized travel cost** ($\alpha - \beta - \gamma$ model: Vickrey, 1969, Arnott et al., 1990):

$$C(t_d) = \alpha \cdot tt(t_d) + \beta[t^* - t_d - tt(t_d)]^+ + \gamma[t_d + tt(t_d) - t^*]^+,$$

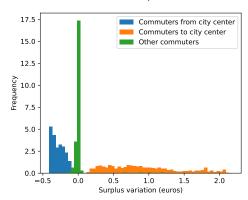
with
$$\alpha=$$
 10, $\beta=$ 5, $\gamma=$ 20

- Desired arrival time t^* uniformly distributed between 7:30 and 10:30
- Mode choice is disabled

- Car-free zone (in red) with a radius of 500 m
- Crossing the city center is no longer possible
- Assumption: Commuters coming from or going to the city center have to walk for 250m (3min at 5 km/h, i.e., an extra cost of 0.5 euros with a VOT of 10)

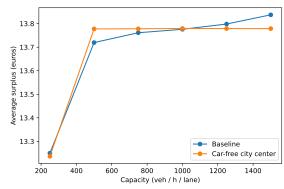
Aggregate Results without Congestion

	Baseline scenario	Car-free city center
Av. user surplus	14.12 euros	13.94 euros
Congestion level	0.00%	0.00 %
Av. travel time (ex. walk)	15'38"	16'27"
Av. travel time (inc. walk)	15'38"	16'40''
Av. vehicle-km	15.25 km	15.93 km

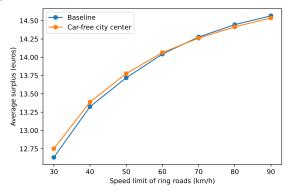

Note: The user surplus is the expected travel utility resulting from the departure-time choice model.

Aggregate Results with Congestion

	Baseline scenario	Car-free city center
Av. user surplus	13.72 euros	13.78 euros
Congestion level	9.66%	5.25 %
Av. travel time (ex. walk)	18'04"	17'21"
Av. travel time (inc. walk)	18'04"	17'34"
Av. vehicle-km	15.79 km	15.80 km


Note: The user surplus is the expected travel utility resulting from the departure-time choice model.

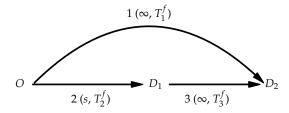
- Commuters to the city center are better off (they face less congestion)
- Commuters from the city center are worse off (they have to walk to the outside of the car-free area)
- Other commuters have a similar surplus in the two scenarios


Comparative Statics: Impact of Road Capacity

Braess paradox only appears if capacity of the inner arterial roads is not too large and not too small

Comparative Statics: Impact of Ring Speed Limit

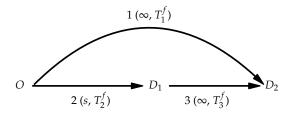
Braess paradox only appears if the speed limit for the alternative route is not too high

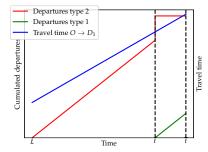

Three edges:

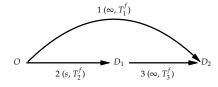
- **Q** Edge 1, bottleneck of capacity $s_1 = \infty$, free-flow travel time T_1^f
- **2** Edge 2, bottleneck of capacity $s_2 = s$, free-flow travel time T_2^f
- **1** Edge 3, bottleneck of capacity $s_3 = \infty$, free-flow travel time T_3^f

Link travel-time is

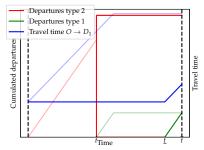
$$tt_I(t) = T_I^f + \frac{Q_I(t+T_I^f)}{s_I},$$

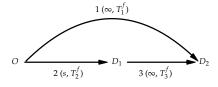

where $Q_l(t + T_l^f)$ is the length of the queue of vehicles at the bottleneck of link I, at time $t + T_l^f$.


- N_1 **type-1 commuters** traveling from O to D_1
- N_2 **type-2 commuters** traveling from O to D_2 (two routes: $O \rightarrow D_1 \rightarrow D_2$ or $O \rightarrow D_2$)
- **Travel cost**, for departure time t ($\alpha \beta \gamma$ model):


$$C(t) = \alpha \cdot tt(t) + \beta [t^* - t - tt(t)]^+ + \gamma [t + tt(t) - t^*]^+$$

• α , β , t^* are homogeneous, γ is set to ∞


- ullet From \underline{t} to \hat{t} , type-2 commuters are leaving origin at a rate $s \frac{\alpha}{\alpha-\beta}$.
- ullet From \hat{t} to \overline{t} , type-1 commuters are leaving origin at a rate $s rac{lpha}{lpha-eta}.$



Analytical Example: Car-Free City Center

- D₁ becomes a car-restricted area
- Type-2 commuters have only one possible route, through link 1

Car-free city centers can have a positive effect on traffic conditions

- The main winners are the commuters to the city center
- The impact of the car-free city center on congestion depends on the capacity of the roads in the city center and the speed limit of the detour roads
- Future works: time-dependent restriction, full-scale application to a large urban area

Thank you

