Agrégation d'enquêtes mobilité pour analyser l'intermodalité : enseignements tirés de 68 enquêtes françaises

Lucas Javaudin

LVMT, ENPC, Institut Polytechnique de Paris, Univ Gustave Eiffel THEMA, CY Cergy Paris Université

Séminaire LVMT 24 novembre 2025

Outline

Standardisation et agrégation d'enquêtes avec MobiSurvStd

Analyse de l'intermodalité

Lucas Javaudin

•

Séminaire LVMT

24 novembre 2025

(2/23)

Motivations

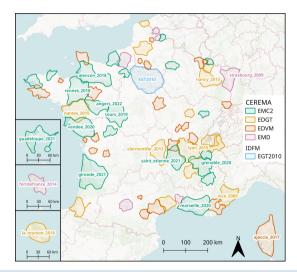
Les enquêtes mobilité sont riches en données mais difficiles à exploiter :

- Divers formats: CEREMA (EMC², EDGT, EDVM, EMD), IDFM (EGT 2010, EGT H2020), SDES (ENTD 2008, EMP 2019), IPR (EMG)
- Fichiers CSV (+ fichiers SIG) pas toujours évident à lire (quel séparateur, quel encodage, quel type de données pour chaque colonne)
- Nom des variables et des modalités pas clair (ex. pour l'EMC² : "P2" pour le genre avec modalité 1 pour un homme et 2 pour une femme)
- Jointures complexes entre les ménages, personnes, déplacements et trajet

Solution: l'outil MobiSurvStd

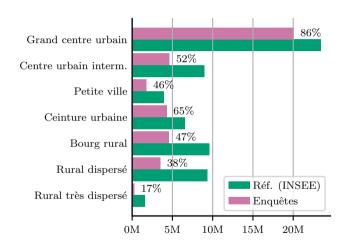
- Librairie Python open source
- Avec une commande simple, permet de convertir une enquête en un format standard
- Lecture et conversion des ménages, personnes, déplacements, trajets, voitures, motos et zones (secteurs de tirage, zones fines, générateurs de trafic)
- 286 variables
- Format standard en fichiers Parquet avec une documentation claire
- 7 formats actuellement supportés (EMC², EDGT, EDVM, EMD, EMP, EGT–2010, EGT–H2020) pour environ 80 enquêtes

https://mobisurvstd.github.io/MobiSurvStd/


Les 68 enquêtes utilisées

Types d'enquêtes

- 21 enquêtes EMC² (2018–2022)
- 15 enquêtes EDGT (2009–2017)
- 24 enquêtes EDVM (2010–2017)
- 7 enquêtes EMD (2009–2017)
- 1 enquête EGT (2010)


Au total:

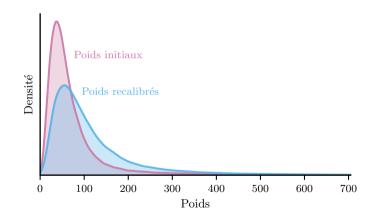
- 701 000 personnes enquêtées
- 1841000 déplacements observés

Converture territoriale

- Les 68 enquêtes couvrent environ 62 % de la France
- Les communes les moins densément peuplées sont les moins bien représentées
- Les ménages de communes à habitat rural très dispersé sont exclus (trop faible représentativité)

Lucas Javaudin

Séminaire LVMT


24 novembre 2025

(6/23)

(Re-)calage sur marge

Ajustement des pondérations d'origine des enquêtes pour répliquer les marges sur

- le genre (2 catégories)
- l'âge (8 catégories)
- la PCS (9 catégories)
- la densité de la commune (6 catégories)

Outline

Standardisation et agrégation d'enquêtes avec MobiSurvSto

Analyse de l'intermodalité

Lucas Javaudin

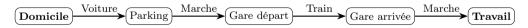
Séminaire LVMT

24 novembre 2025

(8/23)

Rappels sur les enquêtes

- **Déplacement :** mouvement d'une origine à une destination pour un motif donné (ex. : travailler, s'éduquer, faire des achats)
- Trajet : segment continu utilisant un mode de transport unique
- Un déplacement est composé d'un ou de plusieurs trajets



Lucas Javaudin

Définition de l'intermodalité

Un déplacement intermodal est un déplacement contenant au moins deux trajets avec des modes différents

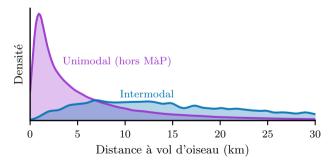
- Les trajets en marche à pied sont exclus de cette définition
- Les modes « transports en commun » (train, métro, bus, etc.) sont regroupés dans une même catégorie
- Modes considérés : voiture conducteur, voiture passager, transports en commun (TC), vélo, moto

Note. Les déplacements non « locaux » (> 80 km) sont exclus de l'analyse

Fait stylisé 1 : Une faible part des déplacements

Sur l'agrégation de 68 enquêtes mobilité :

- 17298 déplacements intermodaux (« poids » de 2.7 millions)
- 1.2 % des déplacements
- 4.6 % de la distance totale (à vol d'oiseau) parcourue

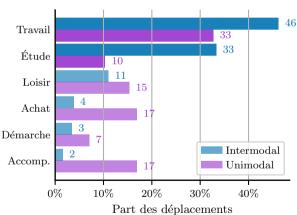

En Île-de-France (EGT 2010):

- 1.5 % des déplacements
- 7.1 % de la distance totale (à vol d'oiseau) parcourue

Fait stylisé 2 : Des déplacements longs

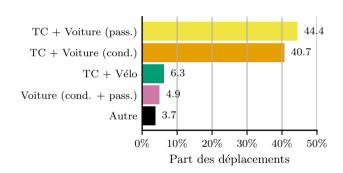
Distance moyenne:

- Déplacements intermodaux : 20.7 km
- Déplacements unimodaux (hors MàP): 7.0 km


Lucas Javaudin • Séminaire LVMT • 24 novembre 2025 • (12/23)

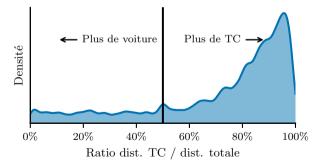
Fait stylisé 3 : Déplacements pour un motif de travail ou d'éducation

Hiérarchie des déplacements de Raux et al. (2018)


Part des motifs travail et éducation :

- Déplacements intermodaux : 79 %
- Déplacements unimodaux (hors MaP): 43 %

Fait stylisé 4: Une majorité de combinaisons voiture + transports en commun


La combinaison de la voiture (conducteur ou passager) et des transports en commun représente 85 % des déplacements intermodaux

Fait stylisé 5 : La majorité de la distance est parcourue en transports en commun

Sur les déplacements voiture + TC, distance à vol d'oiseau moyenne :

- En transports en commun: 18.6 km
- En voiture : 5.2 km

Fait stylisé 6 : Surreprésentation des étudiants et des personnes sans permis parmi les passagers de voiture

Voiture passager + Transports en commun :

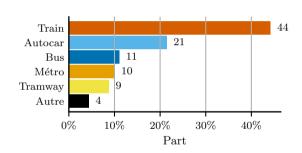
• 77 % d'étudiants ou de personnes sans permis (vs 22 % au global)

 $Voiture\ conducteur\ +\ Transports\ en\ commun\ :$

- Surreprésentation des cadres (31 % vs 19 %) et des professions intermédiaires (34 % vs 25 %)
- Sous-représentation des ouvriers (7 % vs 18 %) et des artisans (3 % vs 7 %)

Fait stylisé 7 : Le train et l'autocar comme modes principaux de correspondance

Usage du train:

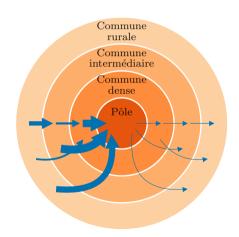

• Correspondance Voiture \leftrightarrow TC : 44 %

• Global: 17 %

Usage de l'autocar :

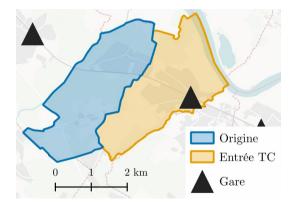
• Correspondance Voiture \leftrightarrow TC : 21 %

• Global: 11 %

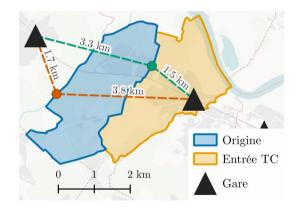


Dans 62 % des cas, la partie TC ne comporte qu'un seul tronçon.

Fait stylisé 8 : Une connexion des milieux peu denses / ruraux vers les centres urbains


Grille de densité de l'INSEE en 3 niveaux (commune densément peuplée, de densité intermédiaire ou rurale) + distinction commune pôle de l'aire d'attraction (AAV)
Parmi les déplacements Voiture→TC:

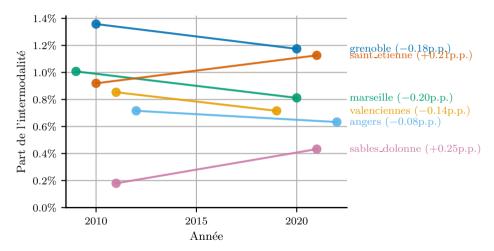
- 38 % partent de communes rurales (vs 26 % pour les déplacements unimodaux)
- 55 % arrivent dans des communes pôle d'AAV (vs 18 % pour les déplacements unimodaux)


Bonus : Étude du choix de la gare de correspondance

- Les enquêtes permettent de connaître l'origine et le lieu de correspondance à l'échelle de *zones fines* (aire de 6 km² en moyenne)
- La localisation des arrêts de transports en commun sur toute la France sont connues grâce aux fichiers GTFS

Bonus : Étude du choix de la gare de correspondance

- La gare utilisée est la plus proche si, pour tous les sommets de la zone d'origine, la gare la plus proche se situe dans la zone d'entrée
- La gare utilisée n'est pas la plus proche si, pour tous les sommets de la zone d'origine, la gare la plus proche ne se situe pas dans la zone d'entrée
- Dans les autres cas, on ne peut pas conclure



Bonus : Étude du choix de la gare de correspondance

- Les utilisateurs du train prennent assez souvent la gare la plus proche (entre $36\,\%$ et $66\,\%$ des cas)
- Les utilisateurs du tramway et du métro semblent répondre à une autre logique (stationnement, ligne desservie, temps de trajet global)

	Train	Tramway	Métro
Utilise l'arrêt le plus proche	36%	8 %	19%
N'utilise pas l'arrêt le plus proche	34%	69%	59%
On ne sait pas	30%	23%	22%

Bonus 2: Variations temporelles

Merci pour votre attention

Liens utiles:

- Standardisation des enquêtes avec MobiSurvStd: https://mobisurvstd.github.io/MobiSurvStd
- Code source pour reproduire les résultats : https://github.com/LucasJavaudin/intermodality-analysis