

Impact of Low-Emission Zones on Spatial and Economic Inequalities using a Dynamic Transport Simulator

AICC Poster 2023-09-29

Authors

Lucas Javaudin (presenter) André de Palma

Institution

THEMA, CY Cergy Paris Université

Contact

lucas.javaudin@cyu.fr

Slides available at

lucasjavaudin.com/metropolis/itea

lle-de-France's Low-Emission Zone (LEZ)

- More than 40% of inhabitants and 10% of roads of the region are inside the LEZ
- All vehicles are classified according to their fuel type and age (Crit'Air system)
- Starting in 2025, vehicles with Crit'Air 3 or worse will be banned (32% of today's fleet)
- Goal of the policy: improve air quality in the region

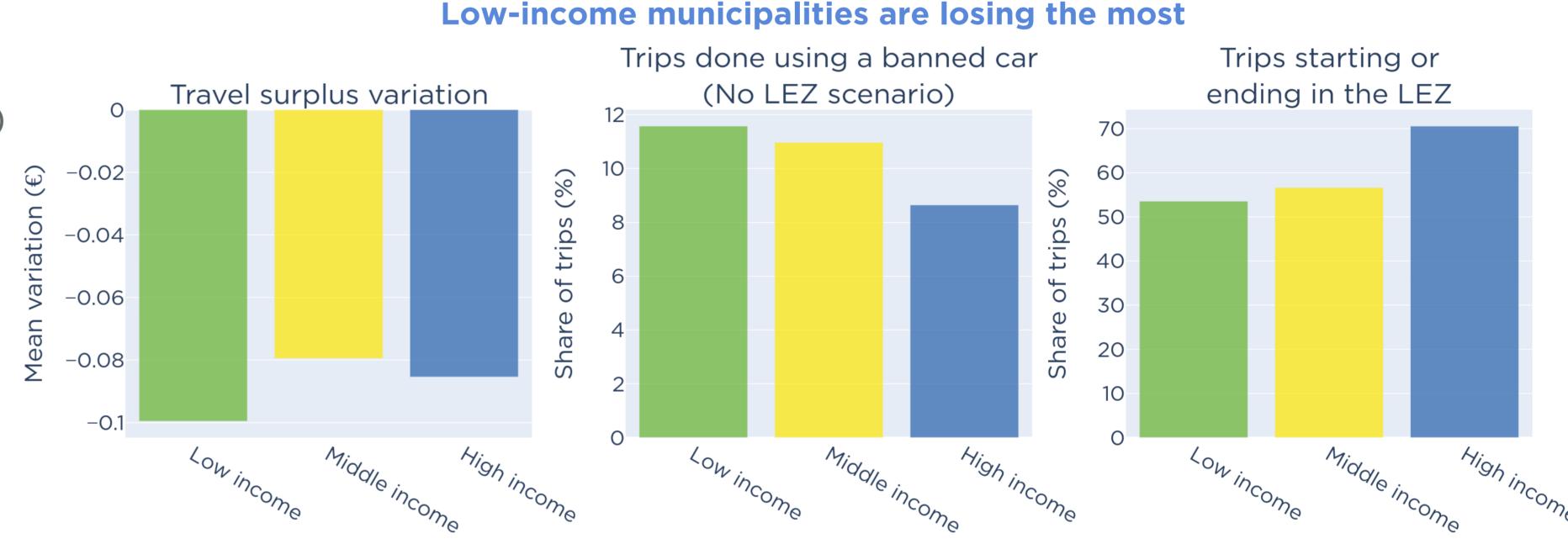
Transport Simulation (METROPOLIS)

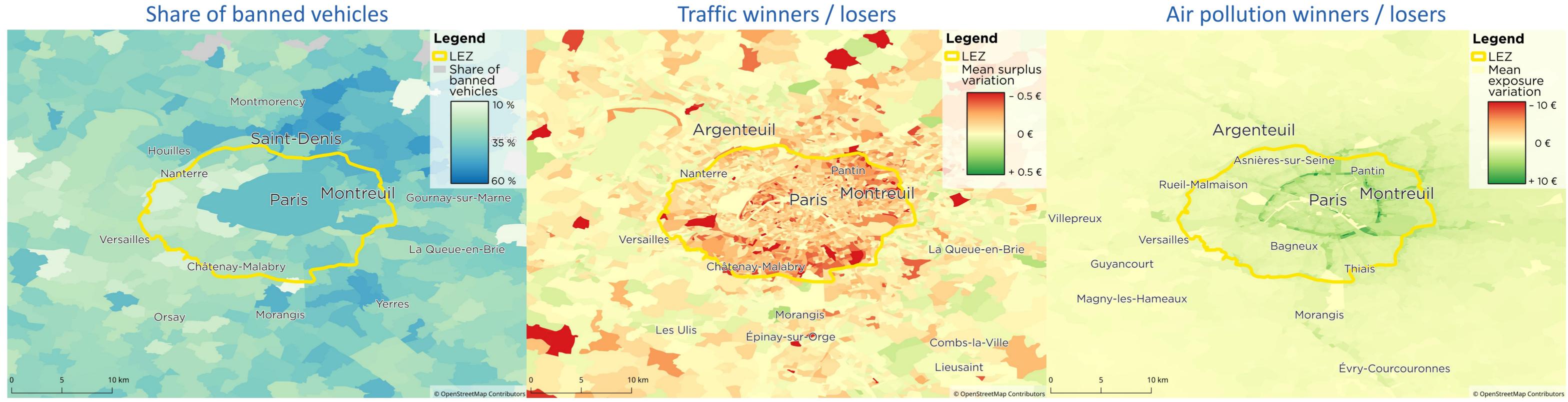
- Ile-de-France, morning peak (3h-10h), three modes (car, public transit, walk), all purposes
- Road network from OpenStreetMap, public-transit network from **GTFS** file
- Synthetic population simulated using Hörl and Balac (2021), with car type and fuel (6.29M agents)
- Agents minimize their generalized cost (Vickrey formula with Nested Logit)
- Iterative process: choices (mode, departure time and route) are simulated until the expected congestion converges
- Short term model: car ownership and OD pairs are kept constant

Pre-Day Model Compute the mode, departure time and route chosen by each agent Agents' choices Within-Day Model Simulate the movements of Expected network weights the agents on the network and compute the resulting network weights Simulated network weights Day-to-Day Model Update the expected network weights given the simulated network weights; Stop if

convergence is reached

LEZ Traffic Impact


- Agents with banned cars need to switch to public transit or walk if they want to enter the LEZ
- Agents with clean cars might face less congestion


Car use decreases by 220k (-10 %)

- Vehicle-kilometer decreases by 2.8M km (-9 %)
- Congestion index decreases from 32 % to 27 % ⊕ -0.02
- Average surplus by agent decreases by 0.09 €

Main **mode shifts**:

- Car to Public transit (for banned cars), 3.8 %
- Car to Walk (for banned cars), 1.1 %
- Public transit to car (for clean cars), 1.3 %
- Walk to car (for clean cars), 0.1 %

LEZ Air Pollution Impact

 NO_x, PM_{2.5} and CO emissions, dispersion and population exposure are computed using **METRO-TRACE**

(Le Frioux, de Palma, Blond, 2023)

- Emissions decrease by 21 % (NO_x), 14 % (PM₂₅), 33 % (CO)
- Health impact of population exposure to pollutants decrease by 33% (NO_x), 18 % (PM₂₅), 56 % (CO)

[value of statistical life: 7.4 M €]

• CO₂ emissions decrease by 9 %

Health surplus variation 0.4 0.2

LEZ Cost-Benefit Analysis (values are for a single morning peak)

565 k € **Travel surplus** (inc. owners of banned cars) 1 010 k €) 445 k €) (inc. owners of clean cars)

Health surplus

Total surplus

(inc. exposure to NO_x) (inc. exposure to PM_{25})

(inc. exposure to CO) **Environmental surplus** (CO₂ emissions)

95 k €

+ 16 451 k €

+ 16 921 k €

(+ 14 596 k €)

1988 k €)

337 k €)

Estimated surplus increase over 1 year: 8.2 billion €