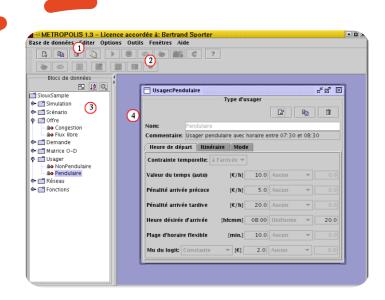
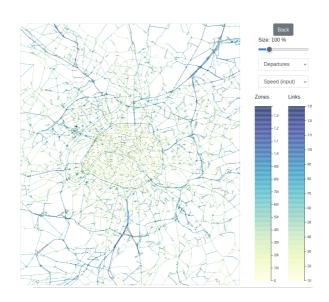


METROPOLIS2: a dynamic, mesoscopic, agent-based transport simulator

André de Palma, Lucas Javaudin THEMA, CY Cergy Paris Université

November 2024


What is Metropolis?


- METROPOLIS is dynamic, agent-based traffic simulator
- It is rooted is the theory of dynamic models (Vickey, 1969; de Palma, Ben-Akiva, et al,1987; Arnott, de Palma and Lindsey, 1992)
- It combines:
 - A rigorous micro demand model (describing the choice tree)
 - Realistic congestion laws
 - Day-to-day iterative learning processes leading to a stationary state
- More suitable to evaluate short-, medium-, and (later) longrun policies

METROPOLIS: History

METROPOLIS History

- **1994-1995:** first simulator of METROPOLIS1 [C++] (A. de Palma, Y. Nesterov)
- 1996-2003: simulator [C++] & Interface [Java] for METROPOLIS1 (A. de Palma, F. Marchal)
- **2004-2018**: applications, calibration, case studies, interface with VISUM
- **2018-2021:** Web interface for METROPOLIS1 [Python Django] (L. Javaudin)
- **2021-:** METROPOLIS2 [Rust] (A. de Palma, L. Javaudin), external modules [Python]

METROPOLIS in a nutshell

Demand side: Discrete-choice models with agents

Agents are making travel decisions (mode of transportation, departure time, route)

Decision-making process based on **utility maximization** using **discretechoice models** (e.g., Multinomial Logit, Continuous Logit)

Utility depends on value of travel time, schedule delays, fuel cost, etc.

Computation of **individual surplus** for policy evaluation

Demand side: Input data

List of agents with:

- List of **trips** to perform (with origin and destination, desired departure / arrival time)
- Modes available (road mode or constant-travel-time mode)
- Preference parameters (e.g., value of travel time)
- Choice models (how mode / departure time is chosen)

Supply side: mesoscopic & dynamic simulations

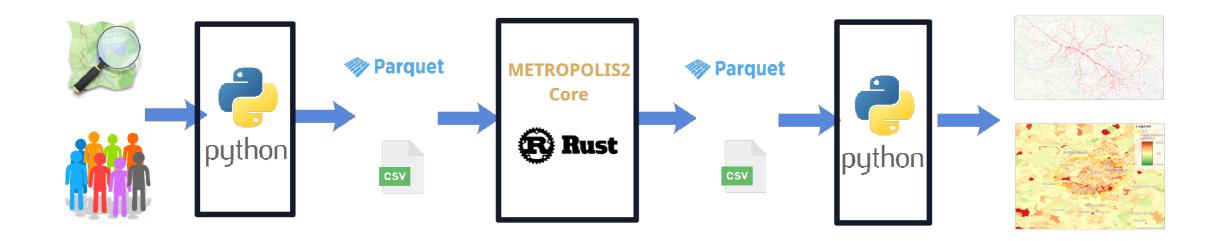
Road trips take place on a **road network** (directed graph)

Vehicles are simulated as autonomous entities

Mesoscopic: Congestion is aggregated at the road-segment level

Dynamic: All events are simulated in continuous time

Congestion appears from **bottlenecks**, with queue propagation **(spillback)**


Supply side: Input data

List of **road segments** defining
a directed graph
with:

- Source / target node
- Length
- Number of lanes
- Free-flow speed
- Bottleneck capacity

List of **vehicle types** with:

- Headway length
- Passenger car equivalent
- Speed limit
- Road restrictions

Complete workflow

- 1. Python scripts are processing raw data to create the simulator's input data
- The simulator reads input data and writes output data in Parquet or CSV format
- B. Python scripts are processing the simulator's output data to create output tables / graphs / maps

Output data

Aggregate results (e.g., surplus, inequality measures, travel time, congestion, mode shares, vehicle kilometers)

Individual-level travel decisions (mode, departure time, route) and output (surplus, travel time, arrival time)

Road-level output (flows, travel-time function, local and global emissions)

METROPOLIS1: Past achievements

Bibliography on METROPOLIS

- 1. de Palma, A. & F. Marchal (1996), METROPOLIS: un outil de simulation du trafic urbain, *Revue Transports*, 378, 304-315.
- 2. de Palma, A. & R. Rochat (1997), Impact of Adverse Weather Conditions on Travel Decisions: Experience from a Behavioral Survey in Geneva, *International Journal of Transport Economics*, XXIV(2), 307-325.
- 3. Khattak, A. & A. de Palma (1997), Impact of Adverse Weather Conditions on the Propensity to Change Travel Decisions: A Survey of Brussels Commuters, *Transportation Research A*, 31(3), 181-203.
- 4. de Palma, A., F. Marchal & Yu. Nesterov (1997), METROPOLIS: Modular System for Dynamic Traffic Simulation, *Journal of the Transportation Research Board*, 1607, 178-184.
- 5. de Palma, A. & O. Sanchez (1998), Bilans socio-économiques des infrastructures de transport : pertinence des méthodes d'évaluation en Ile-de-France, *METROPOLIS*, 106-107, *Evaluer et décider dans les transports*, 51-56.
- 6. de Palma, A. & F. Marchal (1998), METROPOLIS A Dynamic Simulation Model Designed for ATIS Applications, in *Traffic and Transportation Studies, Proceedings of ICTTS' 98*, Z. Yang K. Wang and B. Mao, (eds.), American Society of Civil Engineers, 770-781.

Bibliography on METROPOLIS

- 7. de Palma A. & F. Marchal (1998), METROPOLIS: From W. Vickrey to Large Scale Dynamic Traffic Models, in *PTRC Proceedings, Transportation Planning Methods*, I, 211-224.
- 8. de Palma, A. & F. Marchal (2002), Real Cases Applications of the Fully Dynamic METROPOLIS Tool-Box: an Advocacy for Global Large-scale Mesoscopic Transportation Systems, *Network and Spatial Economics*, Regional and Transportation, special issue on Micro-simulations, 347-369.
- 9. de Palma, A., M. Kilani & R. Lindsey (2003), Congestion Pricing on Urban Road Networks Using the Dynamic Traffic Simulator METROPOLIS, B.P.Y. Loo and S.W.K. Lam (eds.), *Proceedings of the 8th Conference of Hong Kong Society for Transportation Studies*, December 13, 2003, 462-471.
- 10.de Palma, A., M. Kilani & R. Lindsey (2005), Congestion Pricing on a Road Network: A Study Using the Dynamic Equilibrium Simulator METROPOLIS, *Transportation Research*, A, 39, 588-611.
- 11. Saifuzzaman, M. L. Engelson, I. Kristoffersson & A. de Palma (2016), Stockholm congestion charging: an assessment with METROPOLIS and SILVESTER, *Transportation Planning and Technology*, 39(7), 653-694.
- 12. Vosough; S, A. de Palma & R. Lindsey (2022). Pricing vehicle emissions and congestion externalities using a dynamic traffic network simulator, *Transportation Research* A, 161, 1-24.

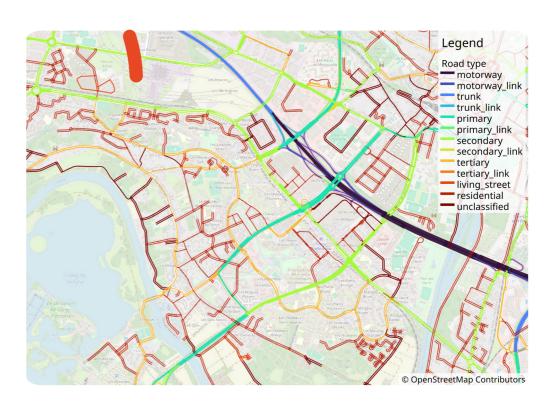
METROPOLIS2: Under the hood

Input: Synthetic population

- Fictitious population of households and persons generated to be representative of the actual population
- Combination of data: census, travel survey, firm & building database
- **Example** of household:
 - a. ID: 19
 - b. Number of cars: 1
 - c. Number of bicycles: 3
 - d. Monthly income: 11 865 €

Persons

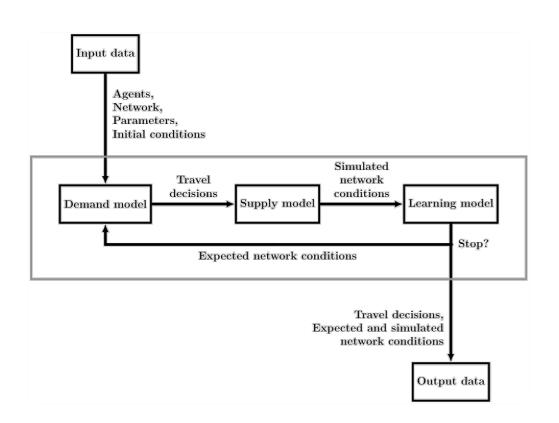
Id	Age	Sex	Socio-professional class
34	51	Man	Employee
35	48	Woman	Employee
36	17	Man	No professional activity
37	13	Woman	No professional activity


Input: Synthetic population

Trips

Id	id Person	time	Arrival time	Preceding purpose	purpose
133	34	07:52:56	08:41:56	Home	Work
134	34	19:01:56	19:41:56	Work	Home
135	35	07:26:03	07:46:03	Home	Work
136	35	17:56:03	18:26:03	Work	Home
137	36	09:49:46	09:54:46	Home	Education
140	36	16:49:46	17:09:46	Education	Home
141	36	17:49:46	18:04:46	Home	Leisure
142	36	19:04:46	19:19:46	Leisure	Home
143	37	08:03:12	08:08:12	Home	Education
144	37	16:31:12	16:34:12	Education	Home

Input: OpenStreetMap & GTFS

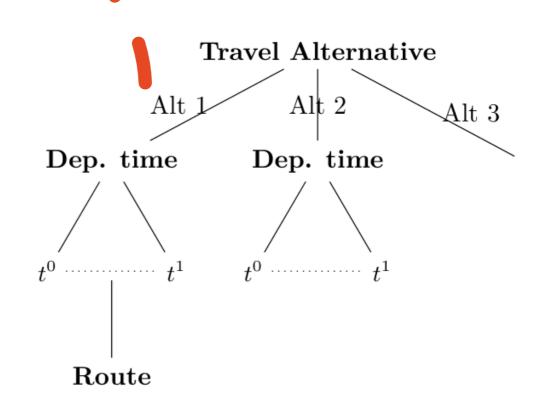

- Road network data can be imported from **OpenStreetMap**
- Public-transit schedule can be read from GTFS data
- OpenTripPlanner is used to compute public-transit travel times

Calibration

Many simulations parameters can be **automatically calibrated** to replicate **TomTom** and **travel survey** data

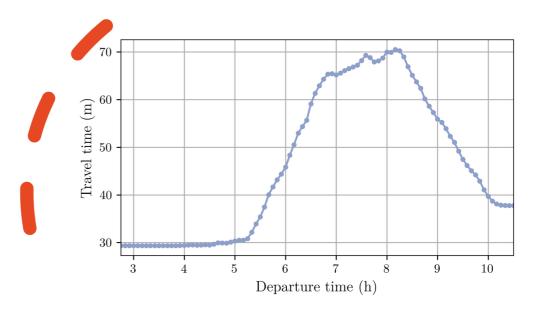
Step	Calibrated parameters	Target values	Target source	Methodology
1	Road constant penalties and free-flow speed	Free-flow travel times	TomTom API	Lasso regression
2	Road capacities	Time-dependent congested travel times	TomTom API	OLS regression
3	Schedule-delay penalties by purpose	Distribution of departure times by cluster	Travel survey	Bayesian Optimization with Gaussian Process
4	Utility parameters by socio-demographic characteristics	Mode shares by cluster	Travel survey	Random Forest regression

Iterative process


An iterative process is required to update agents' decisions until their congestion expectations match the simulated congestion

Demand model: Trips & Trip chaining

- Trip options:
 - Road trips (e.g., car driver, car passenger, truck, motorcycle)
 - Constant-travel-time trips (e.g., walking, bicycle, reliable public transit)
 - Public-transit trips (work-in-progress)
- Trip chaining: each agent perform an ordered sequence of an arbitrary number of trips
- Intermodal trips: Trip chains can combine different modes

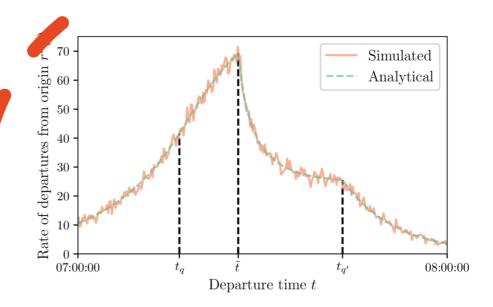

Demand model: Individual decision process

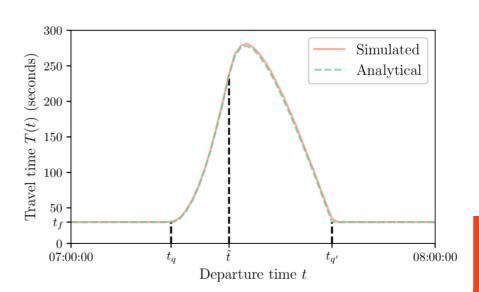
- Level 1: Agents choose an alternative (combination of mode and trip chain); Multinomial Logit, Nested Logit, Deterministic model, etc.
- Level 2: Agents choose a
 departure time for the first trip;
 Continuous Logit, Multinomial
 Logit, exogenous.
- Level 3: Agents choose the fastest route (for road trips)

Demand model: Routing

- Routing algorithms are required for the departure-time choice (travel time as a function of departure time for an origin-destination pair) and the route choice (fastest path from origin to destination given the departure time)
- METROPOLIS2 employs timedependent Contraction Hierarchies, allowing for thousands of requests per second on large-scale networks

Supply model: Congestion modeling

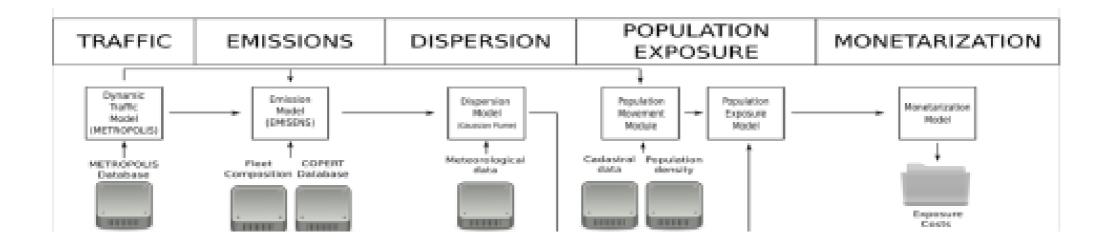

- Bottleneck congestion: inflow of vehicles is limited by road capacity
- Queue propagation (spillback): inflow of vehicle is limited by road storage capacity (# vehicles that can spread on road length)
- Speed-density functions: vehicle speed is a function of road vehicle density


Running time

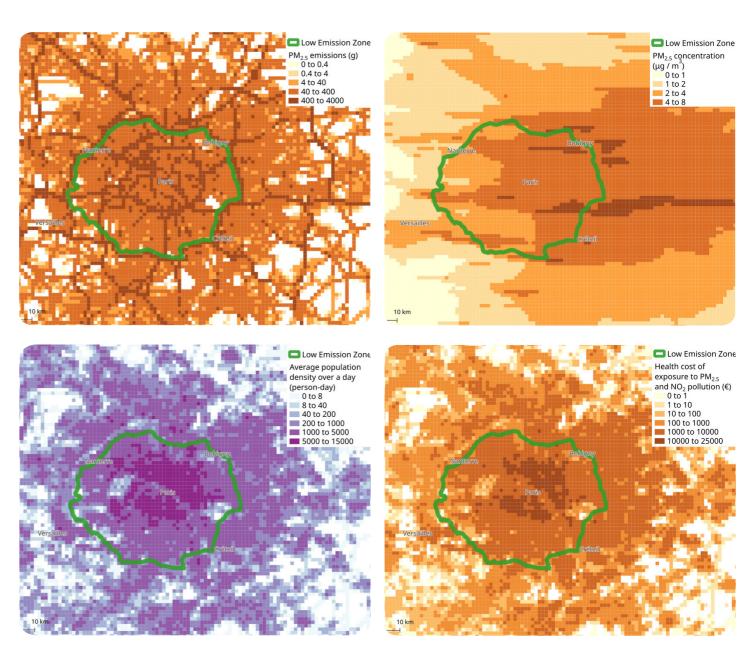
- Simulator running time depends on:
 - a. # agents
 - b. # alternatives
 - c. # trips
 - d. # road network size (# segments)
 - e. # unique origins / destinations
 - f. # OD pairs
- Exemple: runnning time 30 min. per iteration with 4M agents, 9M trips, 5 modes, 337k road segments, 117k unique origins / destinations, 4M unique OD pairs

Analytical validation

- Analytical results from de Palma et al. (1983) are well replicated with METROPOLIS2
- Model: single road, bottleneck, alpha-beta-gamma preferences, Continuous Logit departure-time choice



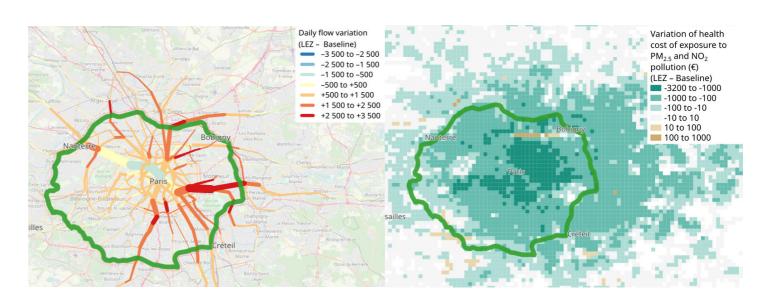
External Python modules


- METRO-MATCH
- METRO-TRACE (see next slides)
- METRO-NOISE (under construction)

External modules: METRO-TRACE

External modules: METRO-TRACE

- Compute road traffic emissions given vehicle characteristics and road-level speeds (EMISENS model)
- **Disperse** emissions in the atmosphere on a grid (Gaussian plume dispersion model)
- Compute **population density** over the simulation period on a grid
- Compute exposure by combining pollutant concentration and population density
- Monetarize exposure to obtain health costs



METROPOLIS2: Case studies

Low Emission Zone

- Starting in January 2025, the most polluting vehicles (about 20% of the vehicle fleet) will be restricted from entering a 367km² area around Paris
- Predicted impacts:
 - **a.Congestion reduction** on the Boulevard Périphérique (top right)
 - **b.Increase in passenger flows** for lines connecting Paris to the suburbs (bottom left)
 - c. Decreased health cost from exposure to PM2.5 and NO2 emissions around Paris (bottom right)

Filtering Process and Parameter Values

Matching: Filtering Process

40 % (82,000) car travelers are selected randomly to participate in ridesharing.

- Distance filter:
 - Origins within 5 km.
 - Destinations within 5 km.
- 2 Time filter:
 - Arrival times within 20 minutes $(t_a \pm 20)$.

Parameter Values

- $\alpha = 10 \in /hr$, $\beta = 5 \in /hr$, $\gamma = 5 \in /hr$
- Vehicle mileage = 15 km/litre
- Fuel cost = 1.8 € /litre
- Emission cost = 200 € /tonne *CO*₂
- Walking speed = 4 km/hr
- Walking value of time = 10 € /hr

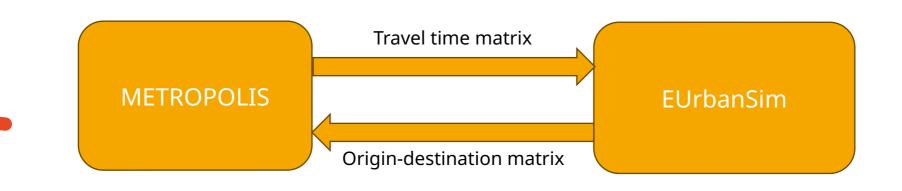
Carpooling (with Samarth Ghoslya)

Change in results with and without ridesharing scenario for morning peak:

	Before ridesharing After ridesharin		Change	
Total cars	2.06 million	1.86 million	-195 420 (9.45%)	
Congestion	43.78%	41.02%	-2.76%	
Fuel consumption	1.97 million litres	1.86 million litres	-5.48%	
CO ₂ emission	625 tonnes	591 tonnes	-34 tonnes	
Mean departure time	8:08 a.m.	8:09 a.m.	$+1^{\prime}$	
Mean arrival time	8:27 a.m.	8:26 a.m.	$-1^{'}$ $3^{''}$	
Mean travel time	18′ 33″	17 02"	$-1^{'}$ $31^{''}$	
Total distance	30.70 million km	29.25 million km	-1.45 million km (4.72%)	

Speed limits (with Romuald Le Frioux)

Table 2.9: Total air pollutant traffic costs for CO_2 , NO_2 , O_3 , and $PM_{2.5}$ computed over \bar{l} le-de-France from 3 to 10 a.m, while adding restricting the speed limitations by 20 $km.h^{-1}$ with a minimum of 70 $km.h^{-1}$, while allowing or not for modal changes in the model


Without mode choice					
Pollutant	Total (k€)	Per driver (€)	Per inhabitants (€)	Per kilometer (€)	Per emissions $(\in .kg^{-1})$
CO_2	569	0.281	0.048	0.018	0.1
002	(-0.29%)	(+3.4%)	(-0.29%)	(+0.27%)	(0.0%)
NO.	781	0.386	0.067	0.024	70.58
NO_2	(-0.44%)	(+3.25%)	(-0.44%)	(+0.11%)	(-0.08%)
0	-639	-0.316	-0.054	-0.02	-
O_3	(+0.09%)	(+3.8%)	(+0.09%)	(+0.65%)	-
DM	798	0.395	0.068	0.025	891.39
$PM_{2.5}$	(-1.51%)	(+2.14%)	(-1.51%)	(-0.96%)	(-0.82%)
T-4-1	1509	0.746	0.128	0.047	-
Total	(-1.17%)	(+2.49%)	(-1.17%)	(-0.62%)	-
			With mode choice	9	
Pollutant	Total (k€)	Per driver (€)	Per inhabitants (€)	Per kilometer (€)	Per emission (€)
CO_2	542	0.261	0.046	0.017	0.1
CO_2	(-5.06%)	(-4.17%)	(-5.06%)	(-1.39%)	(0.0%)
NO.	751	0.362	0.064	0.024	73.96
NO_2	(-4.29%)	(-3.4%)	(-4.29%)	(-0.59%)	(+4.71%)
O_3	-626	-0.301	-0.053	-0.02	-
	(-1.92%)	(-1%)	(-1.92%)	(+1.87%)	-
DM.	797	0.384	0.068	0.025	878.82
$PM_{2.5}$	(-1.58%)	(-0.66%)	(-1.58%)	(+2.22%)	(-2.22%)
Total	1464	0.705	0.125	0.047	-
Total	(-4.13%)	(-3.24%)	(-4.13%)	(-0.43%)	-

METROPOLIS2: Interfaces with other tools

LUTI (Land Use and Transport Interaction)

LUTI models allow to study the long-term consequences of policies (relocation of households and firms).

Here twin between EUrbanSim and METROPOLIS

Microsimulators

Micro-simulators ←→ mesoscopic models

- →Boundary condition for local traffic analysis
- →(a) detailed description of local situations (e.g. intersections); (b) analysis of aggregation and consistency