Ride-sharing with Inflexible Drivers in the Paris Metropolitan Area

André de Palma, Lucas Javaudin, Patrick Stokkink, Léandre Tarpin-Pitre

> THEMA, CY Cergy Paris Université LUTS, École Polytechnique Fédérale de Lausanne

Open Challenges in Flexible Mobility Workshop February 24th, 2023

Lucas Javaudin February 24th, 2023

Outline

- Introduction
- 2 Methodology
- 3 Application to Île-de-France
- 4 Conclusion

Lucas Javaudin February 24th, 2023 2 / 25

Outline

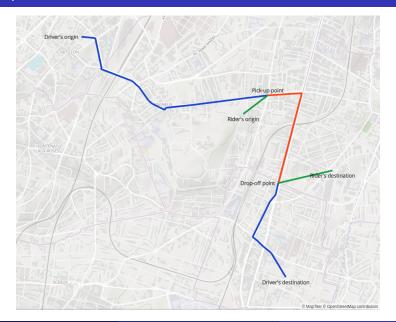
- Introduction
- 2 Methodology
- 3 Application to Île-de-France
- 4 Conclusion

Lucas Javaudin February 24th, 2023 3/25

Motivations

- Low vehicle occupancy, especially for commuting trips (1.05 persons per vehicle on average for commuting trips in Île-de-France, EGT, 2010)
- Increasing vehicle occupancy would decrease congestion and pollution
- The French government is subsidizing ridesharing drivers (up to 100 euros for new drivers)
- What would be the impact of a large-scale development of ridesharing?

Lucas Javaudin February 24th, 2023


Ridesharing Scheme

We propose the following ridesharing scheme:

- Drivers keep their chosen route and departure time (no detour and same schedule)
- Drivers can be compensated by state subsidies for the (small) inconvenience cost of having someone in their car
- Riders walk from origin to a pick-up point and from a drop-off point to destination
- The trip is free-of-charge for the riders
- The matching between drivers and riders is centralized

Lucas Javaudin February 24th, 2023

Example

Lucas Javaudin February 24th, 2023

Results

We propose a methodology to evaluate the impact of such a ridesharing scheme, with an application to the **Île-de-France** region using the transport simulator **METROPOLIS**.

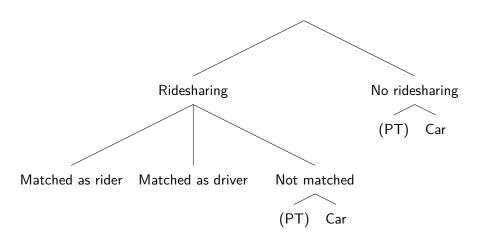
Results with 30 % of people willing to participate in the scheme:

- Ridesharing share: 3.3 %
- Average walking time (for riders): 4 minutes and 53 seconds
- Variation of mileage: decrease of 204 000 vehicle-kilometers (2.2 %)

Lucas Javaudin February 24th, 2023

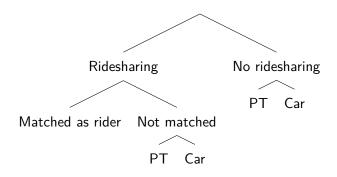
Outline

- Introduction
- 2 Methodology
- 3 Application to Île-de-France
- 4 Conclusion


Lucas Javaudin February 24th, 2023 8 / 25

Four-Step Procedure

- We run a simulation of METROPOLIS without ridesharing to identify the routes and departure times chosen
- We compute the ridesharing costs for any pair of agents participating in the ridesharing scheme
- We find the optimal matching (Linear programming algorithm)
- We run a new simulation of METROPOLIS, excluding the riders, to get aggregate results (e.g., congestion level, mileage, mode shares)


Lucas Javaudin February 24th, 2023

Choices for former car drivers

Lucas Javaudin February 24th, 2023 10 / 25

Choices for former public-transit users

Lucas Javaudin February 24th, 2023 11 / 25

METROPOLIS

- Mesoscopic dynamic transport simulator
- Mode choice between car and public transit (nested Logit model)
- Departure-time choice (continuous Logit model)
- Route choice (deterministic, minimum travel time)
- Choices are based on the generalized travel cost

Lucas Javaudin February 24th, 2023 12 / 25

Generalized Travel Cost

The generalized travel cost by car includes **in-vehicle cost** and **schedule-delay cost** (α - β - γ model):

$$\textit{Cost}_{\mathsf{Car}} = \underbrace{\alpha_{\mathsf{car}} \cdot tt_{\mathsf{iv}}}_{\mathsf{In-vehicle cost}} + \underbrace{\beta \cdot [t^* - t_a]^+ + \gamma \cdot [t_a - t^*]^+}_{\mathsf{Schedule-delay cost}}$$

- ttiv: travel time (in-vehicle)
- t_a: arrival time
- t*: desired arrival time
- α_{car} : value of time in the car
- β : penalty for early arrivals
- \bullet γ : penalty for late arrivals
- $[x]^+ = \max(0, x)$

Lucas Javaudin February 24th, 2023

Ridesharing Cost

The generalized travel cost for riders also includes walking cost:

$$Cost_{\mathsf{RS}} = \underbrace{\alpha_{\mathsf{car}} \cdot tt_{\mathsf{iv}}}_{\mathsf{In-vehicle \ cost}} + \underbrace{\alpha_{\mathsf{walk}} \cdot tt_{\mathsf{walk}}}_{\mathsf{Walking \ cost}} + \underbrace{\beta \cdot [t^* - t_a]^+ + \gamma \cdot [t_a - t^*]^+}_{\mathsf{Schedule-delay \ cost}}$$

- tt_{walk}: walking time (from origin to pick-up and from drop-off to destination)
- α_{walk} : walking value of time

Lucas Javaudin February 24th, 2023 14 / 25

Optimal Matching

The optimal matching is obtained by solving the following **linear programming problem:**

$$\begin{cases} & \min_{x_i, x_{i,j}} & \sum_i \left[x_i \cdot Cost_{NoRider}(i) + \sum_j x_{j,i} \cdot Cost_{Rider}(i,j) \right] \\ & \text{s.t.} & x_i + \sum_j x_{j,i} = 1, \quad \forall i \\ & & \sum_j x_{i,j} \le x_i, \quad \forall i \\ & & x_i \in \{0,1\}, \quad \forall i \\ & & x_{j,i} \in \{0,1\}, \quad \forall (i,j) \end{cases}$$

- $Cost_{NoRider}(i)$: travel cost of i when not a rider (car or public transit)
- $Cost_{Rider}(i,j)$: ridesharing cost of i when matched with driver j
- $x_i = 1$ if i travels by car or public transit (0 otherwise)
- $x_{j,i} = 1$ if j is a driver for i (0 otherwise)

Lucas Javaudin February 24th, 2023

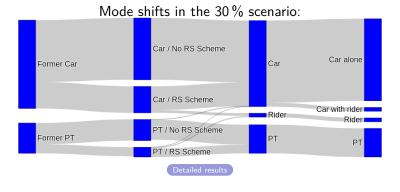
Outline

- Introduction
- 2 Methodology
- 3 Application to Île-de-France
- 4 Conclusion

Lucas Javaudin February 24th, 2023

Data

- Morning peak-period
- Network: 43 857 links, 18 584 intersections and 1360 OD zones
- Demand: 934 042 trips by car or public-transit (commute and non-commute)
- Calibration of METROPOLIS from Saifuzzaman et al., 2012 (EGT 2001)


Lucas Javaudin February 24th, 2023 17 / 25

Assumptions

- A fixed share of people are willing to participate in the ridesharing scheme (as either a driver or a rider): 10%, 20%, 30% and 40% scenarios are tested
- The walking distance between an origin / destination and an intersection is the **euclidian distance**
- Walking speed is set to 4 km/h

Lucas Javaudin February 24th, 2023

Mode Shifts

Lucas Javaudin February 24th, 2023

Aggregate Results

Scenario	Ref.	10 %	20 %	30 %	40 %
Shares					
Transit modal share	25.5 %	25.3 %	24.8 %	24.3 %	23.9 %
Car modal share	74.5 %	73.9 %	73.2 %	72.4 %	71.5%
Ridesharing modal share	0.0 %	0.9 %	2.1 %	3.3 %	4.6 %
Surplus					
Total generalized cost (euros)	_	-72763	-187686	-305683	-427401
CO2 emissions reduction (tons of CO2)	_	11.387	21.809	39.372	57.900
Road network					
Congestion	22.1 %	21.7 %	21.4 %	20.6 %	19.8 %
Car VKT (10 ³ km)	10 799	10740	10 686	10 595	10 499

Lucas Javaudin February 24th, 2023

Drivers' Results

Scenario	Ref.	10 %	20 %	30 %	40 %
Mean travel time	15' 32"	15' 31"	15' 32"	15' 27"	15' 22"
Mean schedule-delay cost (euros)	2.67	2.67	2.67	2.67	2.65
Mean travel cost (euros)	6.03	6.02	6.02	6.00	5.97
Share of time spent with a passenger (for ridesharing drivers only)	_	51.5 %	56.1 %	58.0 %	59.8 %

Lucas Javaudin February 24th, 2023 2

Riders' Results

Scenario	Ref.	10 %	20 %	30 %	40 %
Mean OD distance (meters)	_	5491	5972	6205	6425
Mean walking distance (meters)	_	383	347	325	310
Mean car travel time	_	7' 21"	8' 00"	8' 20"	8' 38"
Mean travel time	_	13' 06"	13' 12"	13' 13"	13' 17"
Mean travel cost (euros)	_	3.26	3.24	3.22	3.22
Riders at their best match	_	76.7 %	69.3 %	65.0 %	62.2 %

Lucas Javaudin February 24th, 2023 2

Multiple Passengers: Aggregate Results

Passengers per driver	1	2	3
Shares			
Transit modal share	24.3 %	24.1 %	24.0 %
Car modal share	72.4 %	71.9%	71.8 %
Ridesharing modal share	3.3 %	4.0 %	4.2 %
Surplus			
Total generalized cost (euros)	-305683	-368724	-393185
CO2 emissions reduction (tons of CO2)	39.372	51.145	50.373
Road network			
Congestion	20.6 %	20.1 %	19.6%
Car VKT (10 ³ km)	10 595	10 534	10 538

Note: Assuming 30 % of participation in the ridesharing scheme

Lucas Javaudin February 24th, 2023 23 / 25

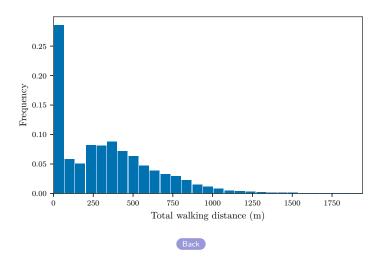
Outline

- Introduction
- 2 Methodology
- 3 Application to Île-de-France

4 Conclusion

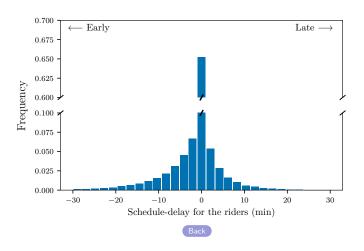
Lucas Javaudin February 24th, 2023 24 / 25

Concluding remarks:

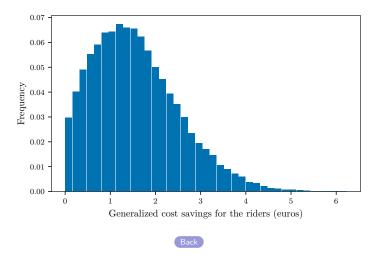

- Ridesharing is an effective tool to reduce congestion and CO2 emissions
- Because of network effects, state intervention through subsidies might be needed to start-up a shift to ridesharing

Future works:

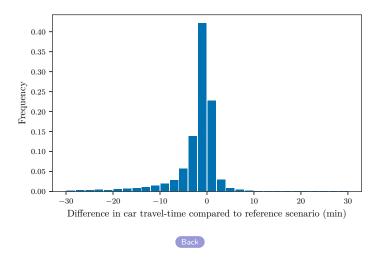
- Allowing drivers to make a detour
- Optimal matching minimizing both individual and social costs (e.g., CO2 emissions)
- Considering morning and evening commute together


Lucas Javaudin February 24th, 2023 25 / 25

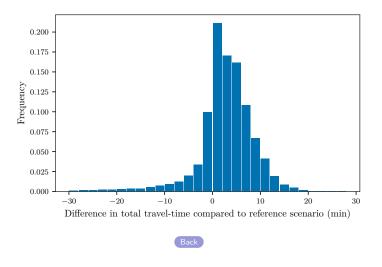
Walking Distance


Lucas Javaudin February 24th, 2023 2

Riders' Schedule-Delay


Lucas Javaudin February 24th, 2023 25 /

Generalized Cost Savings


Lucas Javaudin February 24th, 2023 2

Car Travel-Time Variation

Lucas Javaudin February 24th, 2023 25 / 25

Total Travel-Time Variation

Lucas Javaudin February 24th, 2023 25 / 25