At what time?

Lucas Javaudin¹, André de Palma¹, Nathalie Picard²

¹THEMA, CY Cergy Paris Université ²BETA, Strasbourg University

> June 14, 2023 ITEA 2023

Departure-time choice

- When traveling, individuals face a **trade-off** between travel cost and schedule cost.
- **Travel cost**: function of the travel time and value of time.
- **Schedule cost**: function of the departure and / or arrival time.
- Example trade-off:
	- 1. Leave at 8:00, have a 30-minute trip and arrive on-time at the appointment.
	- 2. Leave at 7:50, have a 20-minute trip and arrive 15 minutes early at the appointment.

Schedule cost

Since Vickrey (1969) and Arnott et al. (1990), schedule cost is often represented with a linear penalty for early and late arrivals $(\alpha-\beta-\gamma \mod d)$:

$$
SC(t_d, t_a) = \beta \cdot [t^* - t_a]^+ + \gamma \cdot [t_a - t^*]^+,
$$

- t ∗ : **desired arrival time** at destination
- β : penalty for early arrivals $(\frac{6}{\pi})$ h)
- γ : penalty for late arrivals (\$ / h)

Desired arrival time $=$ time at which the individual would choose to arrive if travel time was null (can be different from work start time).

Why departure-time choice matters?

- Road opening \rightarrow Decreased congestion during peak period \rightarrow Shift of some individuals from off-peak to peak period \rightarrow Increased congestion during peak period (rebound effect)
- Knowledge of the schedule-cost function is required to predict the extend of the shift from off-peak to peak period (e.g., when running transport simulations).

Literature review

Studies relying on a **travel survey** which includes the **work start time**:

- Small (1982): Multinomial Logit model; α - β - γ model.
- Thorauge et al. (2021): Latent Class Choice model; α - β - γ model with travel-time variability.

Studies using **time-specific constants** (with cyclical functions):

- Zeid et al. (2006); Popuri et al. (2008): Multinomial Logit model.
- Lemp and Kockelman (2010); Lemp et al. (2010): Continuous Logit model estimated with Bayesian estimations.

This paper

Goal: Estimate a departure-time choice model without knowledge of the t^* (desired arrival-time) distribution.

Part I:

- We estimate the **t** [∗] **distribution** from the arrival-time distribution of individuals with a constant travel time.
- We identify the demographic variables which explain t ∗ for the **home-work commute**.

Part II:

• **Continuous Logit model** to estimate α , β and γ , using the t^* distribution estimated in Part I.

Summary of results

Part I:

- The t [∗] distribution depends on **profession category** and **destination area**.
- On average, t ∗ is earlier for *blue-collar workers* than for other profession categories.

Part II:

- β is similar for all profession categories.
- γ is larger for high-qualification jobs (upper and intermediate category) than for low-qualification jobs (blue-collar workers and employees).

Table of contents

[Data](#page-7-0)

[Part I: Desired arrival-time distribution](#page-12-0)

[Part II: Continuous Logit](#page-26-0)

[Conclusion](#page-30-0)

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (8/34)

Enquˆete Globale Transport **(EGT)**

- 2010 **transport survey** for <u>Île-de-France</u> (Paris' region, with 12 millions inhabitants)
- 14 855 households, 35 175 individuals surveyed
- Observations: households characteristics, individual characteristics, trips of the previous day (including, mode, departure time, purpose)

[Data](#page-7-0)

Travel-Time Data

- Source: HERE, Q1 2016
- Historical link-level speed for 15-minute intervals (typical day)
- 977 618 links in the Île-de-France area $(18.51\%$ with a non-constant travel time)
- OD-level travel-time functions computed using a routing algorithm (Time-dependent Contraction Hierarchies)
- Link-level and OD-level travel time functions are piecewise linear functions

[Data](#page-7-0)

Travel-Time Data

Random sample of 500 OD pairs.

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (11/34)

Congestion Index

For each OD pair, we have a travel-time function defined by breakpoints $\{(td_i, tt_i)\}_i$. We compute a congestion index as

$$
c = \sigma_{tt}/tt_0,
$$

where $\sigma_{tt} = \sqrt{(1/n) \sum_i (t t_i - \bar{t} t)^2}$ is the standard-deviation of the travel times and $tt_0 = \min_i tt_i$ is the minimum travel time.

Car trips are split in three categories of equal size based on the congestion index (uncongested, intermediate and congested).

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (12/34)

[Part I: Desired arrival-time distribution](#page-12-0)

[Part II: Continuous Logit](#page-26-0)

[Conclusion](#page-30-0)

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (13/34)

Scope and goal

Scope:

- Home-work trips
- Trips by car (as a driver alone) or walk
- Trips contained in the time window 5AM to 11AM
- Sample size: 4212 trips (3540 by car and 672 by walk)

Goal: Estimate the t^* distribution for trips to work with any mode.

Basic Principle

Claim: When travel-time function is constant, the individual arrives at his ℓ her t^* .

$$
C(t_a) = \alpha \cdot tt(t_a) + \beta \cdot [t^* - t_a]^+ + \gamma \cdot [t_a - t^*]^+
$$

if $tt(t_a) = \overline{t}t \implies \hat{t}_a = \underset{t_a}{\arg \min} C(t_a) = t^*$

Consequence: The arrival-time distribution is equal to the t [∗] distribution *for individuals facing no congestion*.

Trip categories

Three trip categories are analyzed:

- Walk: 672 trips
- Car uncongested (congestion index $\leq 2.46\%$): 1180 trips
- Car congested (congestion index $> 5.87\%$): 1180 trips

Estimated t [∗] **distribution**

Arrival time distribution of *Walk* and *Car uncongested* trips combined

Representativeness

The t^* distribution of *Walk* trips might be different from the t^* distribution of *Car uncongested* trips:

- Different mode chosen ⇒ different demographic characteristics
- Different origin / destination ⇒ different workplace

If the arrival-time distribution for *Walk* and *Car uncongested* trips are similar, then we can assume that the t [∗] distribution does not depend on the mode chosen and thus that **the t**[∗] **distribution of uncongested trips is representative of the t**[∗] **distribution for the whole population**.

Comparing arrival-time distribution

- The **two-sample Kolmogorov-Smirnov test** can be used to compare two samples and assert if they come from the same probability distribution.
- Null hypothesis: "The values in the two samples are drawn from the same probability distribution".

All trips, by mode

The null hypothesis is always rejected at the 1 % level (the distributions are different).

[Part I: Desired arrival-time distribution](#page-12-0)

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (20/34)

[Part I: Desired arrival-time distribution](#page-12-0)

Employees

The null hypothesis that *Walk* and *Car uncongested* have the same distribution **cannot** be rejected.

[Part I: Desired arrival-time distribution](#page-12-0)

Intermediate category

The null hypothesis that *Walk* and *Car uncongested* have the same distribution **cannot** be rejected.

Blue-Collar Workers

The null hypothesis that *Walk* and *Car uncongested* have the same distribution **cannot** be rejected.

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (23/34)

Upper category

The null hypothesis that *Walk* and *Car uncongested* have the same distribution **can** be rejected.

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • $(24/34)$

Upper category: By destination area

Average arrival time (trip count)			
	Paris	Inner suburbs	Outer suburbs
Walk	9:10(70)	8:50(51)	8:38(29)
Car uncongested	9:26(3)	8:46(51)	8:34(185)
Car congested	8:45(51)	8:32(222)	8:38 (127)
Average	8:56	8:37	8:34

Average arrival time (the count)

Ideally, t [∗] distributions should be split by profession category and destination area but sample size is too small.

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (25/34)

Summary

Table of contents

[Part I: Desired arrival-time distribution](#page-12-0)

[Part II: Continuous Logit](#page-26-0)

[Conclusion](#page-30-0)

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (27/34)

Continuous Logit

• Utility of individual n for departure time t is

$$
U_n(t) = V_n(t) + \varepsilon_n(t)
$$

where

$$
V_n(t) = \alpha \cdot tt_n(t) + \beta \cdot [t_n^* - t - tt_n(t)]^+ + \gamma \cdot [t + tt_n(t) - t_n^*]^+
$$

and $\varepsilon_n(t)$ are i.i.d. extreme-value distributed.

• The probability to choose a departure time in interval $[t_i, t_{i+1})$ is

$$
P(y_n \in [t_j, t_{j+1})) = \frac{\int_{t_j}^{t_{j+1}} e^{g(x_n(t), \cdot)} dt}{\int_{t_0}^{t} e^{g(x_n(t), \cdot)} dt}
$$

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (28/34)

Assumptions

- One estimation for each **profession category**: employee, intermediate category, blue-collar worker and upper category.
- **Only car trips.**
- **Mixture model:** $\{\alpha, \beta, \gamma\}$ are fixed coefficients, t_n^* is individual-specific.
- t_n^* has **categorical distribution** with probabilities given in the previous section.
- **Bayesian estimations** are used to estimate the models.

Results

Note: α : value of time; β : early penalty; γ : late penalty.

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (30/34)

Table of contents

[Part I: Desired arrival-time distribution](#page-12-0)

[Part II: Continuous Logit](#page-26-0)

[Conclusion](#page-30-0)

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (31/34)

Takeaways

We estimate the **t** [∗] **distribution** using *arrival-time* distribution of individuals facing no congestion.

- The t [∗] distribution depends on the *profession category* and *destination area*.
- On average, t ∗ is earlier for *blue-collar worker* than for other profession categories.

We estimate α , β and γ using **Bayesian estimations** and a **Continuous Logit model**.

- β is similar for all profession categories (between 5 and 6).
- γ is larger for high-qualification jobs (9 for upper category, 7 for intermediate category) than for low-qualification jobs (5.5 for blue-collar workers, 5 for employees).
- α cannot be estimated accurately.

Future works

- **Evening commute** (desired departure time from origin)
- **Trip chaining** (with t [∗] at intermediate stop and at destination)
- Day-to-day **travel-time variability**
- Integrated **mode** and **departure-time choice**

Slides available at lucasjavaudin.com

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (34/34)

Characteristics of home-work trips

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (35/34)

Travel-Time Data

Reported travel time in the travel survey can be well predicted by the computed travel time with HERE data $(R^2 = 66\%)$.

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (36/34)

Note: Travel-time penalties at intersections are calibrated to reach a slope close to 1.

Travel-Time Data

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (37/34)

Robustness check: travel time

Comparing long / short trips (intermediate category; walk and car uncongested only).

Long trip: Travel time is longer than 30 minutes.

The null hypothesis that *Short trip* and *Long trip* have the same distribution **cannot** be rejected.

Robustness check: distance

Comparing long / short distance trips (intermediate category; walk and car uncongested only).

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (39/34)

Long distance: Euclidian distance between origin and destination is greater than 10 kilometers.

The null hypothesis that *Short distance* and *Long distance* have the same distribution **cannot** be rejected.

Robustness check: children

Comparing trips of people with / without child (intermediate category; walk and car uncongested only).

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (40/34)

The null hypothesis that *Male* and *Female* have the same distribution **cannot** be rejected.

Robustness check: gender

Comparing trips of men / women (intermediate category; walk and car uncongested only).

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (41/34)

The null hypothesis that *Man* and *Woman* have the same distribution **can** be rejected.

Bayesian Estimations

• Values are drawn from the posterior distribution using **Gibbs sampling**: 1. Draw $(t_n^*)^{\tau+1}$, $\forall n$ given $\{\alpha^\tau, \beta^\tau, \gamma^\tau\}$ \rightarrow Metropolis-Hastings algorithm

 $K(t_n^*|\{\alpha,\beta,\gamma\};y_n) \propto L(y_n|\{\alpha;\beta;\gamma\};t_n^*)f(t_n^*|\theta), \quad \forall n$

2. Draw $\{\alpha^{\tau+1}, \beta^{\tau+1}, \gamma^{\tau+1}\}$ given $(t_n^*)^{\tau+1} \to$ Metropolis-Hastings algorithm

$$
K(\{\alpha,\beta,\gamma\}|t_n^*,\forall n;Y) \propto \prod_n L(y_n|\{\alpha,\beta,\gamma\};t_n^*)
$$

• We run 4 simulations with different initial conditions. Each simulation consists in 50 000 iterations of Gibbs sampling.

Results: Intermediate category

0 10000 20000 30000 40000 50000 Iteration $0 + 0$ 2 4 6 81 10 12 14 Value Run 1 Run 2 Run 3 Run 4 0 10000 20000 30000 40000 50000 Iteration $0 +$ 2 4 1 6 8 10 12 14 Value Run 1 Run 2 Run 3 Run 4

Convergence for β and γ

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (43/34)

Results: Intermediate category

0 10000 20000 30000 40000 50000 Iteration Ω 5 10 15 $rac{9}{2}$ 20 -25 30 35 40 Run 1 Run 2 Run 3 Run 4

Convergence for α

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • $(44/34)$

Results: $\beta < \alpha < \gamma$ **inequality**

Contrarily to most other studies, we find $\gamma < \alpha$.

- The desired arrival time might not be equal to the starting time of work
- We do not consider (day-to-day) travel-time variability

Departure-Time Probability Comparison

Example individuals with $t^* = 8$ AM and constant travel time of 30 minutes, for all profession categories.

Lucas Javaudin • **[At what time?](#page-0-0)** • ITEA 2023 • (46/34)