At what time?

Lucas Javaudin¹, André de Palma¹, Nathalie Picard²

¹THEMA, CY Cergy Paris Université ²BETA, Strasbourg University

> June 14, 2023 ITEA 2023

Departure-time choice

- When traveling, individuals face a **trade-off** between travel cost and schedule cost.
- Travel cost: function of the travel time and value of time.
- Schedule cost: function of the departure and / or arrival time.
- Example trade-off:
 - 1. Leave at 8:00, have a 30-minute trip and arrive on-time at the appointment.
 - 2. Leave at 7:50, have a 20-minute trip and arrive 15 minutes early at the appointment.

Schedule cost

Since Vickrey (1969) and Arnott et al. (1990), schedule cost is often represented with a linear penalty for early and late arrivals (α - β - γ model):

$$SC(t_d, t_a) = \beta \cdot [t^* - t_a]^+ + \gamma \cdot [t_a - t^*]^+,$$

- t^* : desired arrival time at destination
- β : penalty for early arrivals (\$ / h)
- γ : penalty for late arrivals (\$ / h)

Desired arrival time = time at which the individual would choose to arrive if travel time was null (can be different from work start time).

Why departure-time choice matters?

- Road opening → Decreased congestion during peak period → Shift of some individuals from off-peak to peak period → Increased congestion during peak period (rebound effect)
- Knowledge of the schedule-cost function is required to predict the extend of the shift from off-peak to peak period (e.g., when running transport simulations).

Literature review

Studies relying on a **travel survey** which includes the **work start time**:

- Small (1982): Multinomial Logit model; α - β - γ model.
- Thorauge et al. (2021): Latent Class Choice model; α - β - γ model with travel-time variability.

Studies using **time-specific constants** (with cyclical functions):

- Zeid et al. (2006); Popuri et al. (2008): Multinomial Logit model.
- Lemp and Kockelman (2010); Lemp et al. (2010): Continuous Logit model estimated with Bayesian estimations.

This paper

Goal: Estimate a departure-time choice model without knowledge of the t^* (desired arrival-time) distribution.

Part I:

- We estimate the t^* distribution from the arrival-time distribution of individuals with a constant travel time.
- We identify the demographic variables which explain t^* for the **home-work** commute.

Part II:

• Continuous Logit model to estimate α , β and γ , using the t^* distribution estimated in Part I.

Summary of results

Part I:

- The t^* distribution depends on **profession category** and **destination area**.
- On average, t^* is earlier for *blue-collar workers* than for other profession categories.

Part II:

- β is similar for all profession categories.
- γ is larger for high-qualification jobs (upper and intermediate category) than for low-qualification jobs (blue-collar workers and employees).

Table of contents

Introduction

Data

Part I: Desired arrival-time distribution

Part II: Continuous Logit

Conclusion

Lucas Javaudin • At what time? • ITEA 2023 • (8/34)

Enquête Globale Transport (EGT)

- 2010 transport survey for Île-de-France (Paris' region, with 12 millions inhabitants)
- 14855 households, 35175 individuals surveyed
- Observations: households characteristics, individual characteristics, trips of the previous day (including, mode, departure time, purpose)

Travel-Time Data

- Source: HERE, Q1 2016
- Historical link-level speed for 15-minute intervals (typical day)
- 977 618 links in the Île-de-France area (18.51 % with a non-constant travel time)
- OD-level travel-time functions computed using a routing algorithm (Time-dependent Contraction Hierarchies)
- Link-level and OD-level travel time functions are piecewise linear functions

Data

(11/34)

•

Travel-Time Data

Random sample of 500 OD pairs.

Lucas Javaudin • At what time? •

Congestion Index

For each OD pair, we have a travel-time function defined by breakpoints $\{(td_i, tt_i)\}_i$. We compute a congestion index as

$$c = \sigma_{tt}/tt_0,$$

where $\sigma_{tt} = \sqrt{(1/n)\sum_i (tt_i - \bar{t}t)^2}$ is the standard-deviation of the travel times and $tt_0 = \min_i tt_i$ is the minimum travel time.

Car trips are split in three categories of equal size based on the congestion index (uncongested, intermediate and congested).

Introduction

Data

Part I: Desired arrival-time distribution

Part II: Continuous Logit

Conclusion

Lucas Javaudin • At what time? • ITEA 2023 • (13/34)

Scope and goal

Scope:

- Home-work trips
- Trips by car (as a driver alone) or walk
- Trips contained in the time window 5AM to 11AM
- Sample size: 4212 trips (3540 by car and 672 by walk)

Goal: Estimate the t^* distribution for trips to work with any mode.

Basic Principle

Claim: When travel-time function is constant, the individual arrives at his / her t^* .

$$C(t_a) = \alpha \cdot tt(t_a) + \beta \cdot [t^* - t_a]^+ + \gamma \cdot [t_a - t^*]^+$$

if $tt(t_a) = \bar{t}t \implies \hat{t}_a = \operatorname*{arg\,min}_{t_a} C(t_a) = t^*$

Consequence: The arrival-time distribution is equal to the t^* distribution for individuals facing no congestion.

Trip categories

Three trip categories are analyzed:

- Walk: 672 trips
- Car uncongested (congestion index ≤ 2.46 %): 1180 trips
- Car congested (congestion index $> 5.87\,\%$): 1180 trips

(17/34)

Estimated t^* distribution

Arrival time distribution of Walk and Car uncongested trips combined

Representativeness

The t^* distribution of *Walk* trips might be different from the t^* distribution of *Car* uncongested trips:

- Different mode chosen \Rightarrow different demographic characteristics
- Different origin / destination \Rightarrow different workplace

If the arrival-time distribution for *Walk* and *Car uncongested* trips are similar, then we can assume that the t^* distribution does not depend on the mode chosen and thus that the t^* distribution of uncongested trips is representative of the t^* distribution for the whole population.

Comparing arrival-time distribution

- The **two-sample Kolmogorov-Smirnov test** can be used to compare two samples and assert if they come from the same probability distribution.
- Null hypothesis: "The values in the two samples are drawn from the same probability distribution".

All trips, by mode

The null hypothesis is always rejected at the 1% level (the distributions are different).

	KS statistic	p-value
Walk / Car uncong.	0.1389	0.0000
Walk / Car cong.	0.1302	0.0000
Car cong. / Car uncong.	0.0932	0.0001

(20/34)

Lucas Javaudin

• At

At what time?

•

Part I: Desired arrival-time distribution

Employees

The null hypothesis that *Walk* and *Car uncongested* have the same distribution **cannot** be rejected.

	KS statistic	p-value
Walk / Car uncong.	0.0850	0.2791
Walk / Car cong.	0.1242	0.0614
Car cong. / Car uncong.	0.1188	0.0806

-

(21/34)

_____I']

Intermediate category

The null hypothesis that *Walk* and *Car uncongested* have the same distribution **cannot** be rejected.

	KS statistic	p-value
Walk / Car uncong.	0.0849	0.2587
Walk / Car cong.	0.1987	0.0000
Car cong. / Car uncong.	0.1630	0.0000

(22/34)

Part I: Desired arrival-time distribution

Lucas Javaudin

• A

At what time?

•

Blue-Collar Workers

The null hypothesis that *Walk* and *Car uncongested* have the same distribution **cannot** be rejected.

	KS statistic	p-value
Walk / Car uncong.	0.1526	0.1585
Walk / Car cong.	0.2024	0.0309
Car cong. / Car uncong.	0.1413	0.0320

(23/34)

Part I: Desired arrival-time distribution

Lucas Javaudin

• At v

At what time?

•

Upper category

The null hypothesis that *Walk* and *Car uncongested* have the same distribution **can** be rejected.

	KS statistic	p-value
Walk / Car uncong.	0.2058	0.0007
Walk / Car cong.	0.2130	0.0001
Car cong. / Car uncong.	0.0887	0.1737

(24/34)

• A

At what time?

•]

Upper category: By destination area

ΠV	Average arrival time (trip count)			
Paris Inner suburbs Outer suburbs				
Walk	9:10(70)	8:50(51)	8:38~(29)	
Car uncongested	9:26~(3)	8:46~(51)	$8:34\ (185)$	
Car congested	8:45~(51)	8:32(222)	8:38 (127)	
Average	8:56	8:37	8:34	

Average arrival time (trip count)

Ideally, t^* distributions should be split by profession category and destination area but sample size is too small.

Summary

(26/34)

Table of contents

Introduction

Data

Part I: Desired arrival-time distribution

Part II: Continuous Logit

Conclusion

Lucas Javaudin • At what time? • ITEA 2023 • (27/34)

Continuous Logit

• Utility of individual n for departure time t is

$$U_n(t) = V_n(t) + \varepsilon_n(t)$$

where

$$V_n(t) = \alpha \cdot tt_n(t) + \beta \cdot [t_n^* - t - tt_n(t)]^+ + \gamma \cdot [t + tt_n(t) - t_n^*]^+$$

and $\varepsilon_n(t)$ are i.i.d. extreme-value distributed.

• The probability to choose a departure time in interval $[t_j, t_{j+1})$ is

$$P(y_n \in [t_j, t_{j+1})) = \frac{\int_{t_j}^{t_{j+1}} e^{g(x_n(t), \cdot)} dt}{\int_{t_0}^{t_1} e^{g(x_n(t), \cdot)} dt}$$

Lucas Javaudin • At what time? • ITEA 2023 • (28/34)

Assumptions

- One estimation for each **profession category**: employee, intermediate category, blue-collar worker and upper category.
- Only car trips.
- Mixture model: $\{\alpha, \beta, \gamma\}$ are fixed coefficients, t_n^* is individual-specific.
- t_n^* has **categorical distribution** with probabilities given in the previous section.
- Bayesian estimations are used to estimate the models.

Results

Employee / Observations: 677			
Point estimate 90 % Confidence interval			
α	11.45	[1.45, 22.25]	
β	5.00	[3.88, 6.33]	
γ	6.10	[4.64, 7.93]	

Intermediate category / Observations: 1294			
Point estimate 90% Confidence interval			
α	22.32	[13.45, 30.72]	
β	6.01	[4.98, 7.24]	
γ	7.09	[5.81, 8.59]	

Blue-collar worker / Observations: 587				
Point estimate 90% Confidence interval				
α	14.45	[2.57, 24.57]		
β	5.24	[3.72, 7.03]		
γ	5.54	[4.24, 7.18]		

Upper category / Observations: 982			
Point estimate 90 % Confidence interval			
α	16.38	[4.32, 28.03]	
β	5.77	[4.65, 7.09]	
γ	8.90	[6.90, 11.19]	

Note: α : value of time; β : early penalty; γ : late penalty.

At what time?

•

ITEA 2023

(30/34)

•

Table of contents

Introduction

Data

Part I: Desired arrival-time distribution

Part II: Continuous Logit

Conclusion

Lucas Javaudin • At what time? • ITEA 2023 • (31/34)

Takeaways

We estimate the \mathbf{t}^* distribution using *arrival-time* distribution of individuals facing no congestion.

- The t^* distribution depends on the profession category and destination area.
- On average, t^* is earlier for *blue-collar worker* than for other profession categories.

We estimate α , β and γ using **Bayesian estimations** and a **Continuous Logit model**.

- β is similar for all profession categories (between 5 and 6).
- γ is larger for high-qualification jobs (9 for upper category, 7 for intermediate category) than for low-qualification jobs (5.5 for blue-collar workers, 5 for employees).
- α cannot be estimated accurately.

Future works

- Evening commute (desired departure time from origin)
- Trip chaining (with t^* at intermediate stop and at destination)
- Day-to-day travel-time variability
- $\bullet\,$ Integrated mode and departure-time choice

Thank you

Slides available at lucasjavaudin.com

Lucas Javaudin • At what time? • ITEA 2023 • (34/34)

(35/34)

•

Characteristics of home-work trips

Lucas Javaudin •

At what time?

•

Travel-Time Data

Reported travel time in the travel survey can be well predicted by the computed travel time with HERE data $(R^2 = 66\%)$.

Dep. Varia	able:	EGT tt	$\mathbf{R} extsf{-squ}$	ared:		0.664
Model:		OLS	F-stat	istic:	8.	274e + 04
No. Obser	vations:	41934	\mathbf{Prob}	$(\mathbf{F}\text{-statis}$	tic):	0.00
	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
\mathbf{cst}	1.5758	0.087	18.061	0.000	1.405	1.747
TIDDE	1 0000	0.000		0.000	0.000	1 007

Note: Travel-time penalties at intersections are calibrated to reach a slope close to 1.

Travel-Time Data

Lucas Javaudin

•

At what time?

• I

ITEA 2023

• (37/34)

(38/34)

Robustness check: travel time

Comparing long / short trips (intermediate category; walk and car uncongested only).

Long trip: Travel time is longer than 30 minutes.

The null hypothesis that *Short trip* and *Long trip* have the same distribution **cannot** be rejected.

	KS statistic	p-value
Short / Long	0.0923	0.2453

(39/34)

Robustness check: distance

Comparing long / short distance trips (intermediate category; walk and car uncongested only).

Long distance: Euclidian distance between origin and destination is greater than 10 kilometers.

The null hypothesis that *Short distance* and *Long distance* have the same distribution **cannot** be rejected.

	KS statistic	p-value
Short / Long	0.0588	0.8531

(40/34)

Robustness check: children

Comparing trips of people with / without child (intermediate category; walk and car uncongested only).

The null hypothesis that *Male* and *Female* have the same distribution **cannot** be rejected.

	KS statistic	p-value
Child / No child	0.0914	0.4662

(41/34)

Robustness check: gender

Comparing trips of men / women (intermediate category; walk and car uncongested only).

The null hypothesis that *Man* and *Woman* have the same distribution **can** be rejected.

	KS statistic	p-value
Man / Woman	0.1469	0.0029

•

Bayesian Estimations

• Values are drawn from the posterior distribution using **Gibbs sampling**: 1. Draw $(t_n^*)^{\tau+1}$, $\forall n$ given $\{\alpha^{\tau}, \beta^{\tau}, \gamma^{\tau}\} \rightarrow$ Metropolis-Hastings algorithm

 $K(t_n^*|\{\alpha,\beta,\gamma\};y_n) \propto L(y_n|\{\alpha;\beta;\gamma\};t_n^*)f(t_n^*|\theta), \quad \forall n$

2. Draw $\{\alpha^{\tau+1}, \beta^{\tau+1}, \gamma^{\tau+1}\}$ given $(t_n^*)^{\tau+1} \to$ Metropolis-Hastings algorithm

$$K(\{\alpha,\beta,\gamma\}|t_n^*,\forall n;Y) \propto \prod_n L(y_n|\{\alpha,\beta,\gamma\};t_n^*)$$

• We run 4 simulations with different initial conditions. Each simulation consists in 50 000 iterations of Gibbs sampling.

Results: Intermediate category

Convergence for β and γ

Lucas Javaudin

At what time?

• I

ITEA 2023

(43/34)

Results: Intermediate category

40 35 30 25 Value 20 15 10 Run 1 5 Run 2 Run 3 Run 4 0 -10000 20000 30000 40000 ò 50000 Iteration

Convergence for α

Lucas Javaudin

•

At what time?

• I'

ITEA 2023

(44/34)

Results: $\beta < \alpha < \gamma$ inequality

Contrarily to most other studies, we find $\gamma < \alpha$.

- The desired arrival time might not be equal to the starting time of work
- We do not consider (day-to-day) travel-time variability

Departure-Time Probability Comparison

Example individuals with $t^* = 8$ AM and constant travel time of 30 minutes, for all profession categories.

Lucas Javaudin • At what time? • ITEA 2023 • (46/34)