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Introduction
Context

The bottleneck model, introduced by Vickrey (1969), is the most
popular model to study rush-hour departure-time choice
The original model considers a single-road network with a continuum
of identical commuters with linear preferences
Many extensions have been proposed with nonlinear preferences,
heterogeneous commuters, multiple-road networks, etc.
There is no analytical method able to solve the model in a general
case
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Introduction
Contributions

I propose an heuristic algorithm to find the equilibrium of the
bottleneck model
I show that the algorithm replicate very well the solutions found with
analytical methods
The algorithm can find the equilibrium in a model with
heterogeneity, multiple-road network and endogeneity
I identify three novel properties on models which are too complex to
be solved with analytical methods
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Bottleneck Model
Supply-Side

Single-road network with a bottleneck of capacity s

O D

Bottleneck of
capacity s

tt = D(t)/s

tt = 0 tt = 0

Total travel time is
T (t) = D(t)

s
Queue length is

D(t) = max
(
0, sup
τ∈{t0,t}

∫ t

τ

(
r(u)− s

)
du
)

where r(t) is departure rate at time t
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Bottleneck Model
Demand-Side

Total utility given departure time td and arrival time ta is

U(td , ta) =
td∫

t0

uo(t)dt +
t1∫

ta

ud (t)dt

t0 td ta t1
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Bottleneck Model
α-β-γ Model

t∗: desired arrival time
α: value of time
β: penalty for early arrival
γ: penalty for late arrival

U(td , ta) = − [α(ta − td ) + β(t∗ − ta)+ + γ(ta − t∗)+]

t0 td ta t∗ t1
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Bottleneck Model
Equilibrium

Free-flow utility is U0(t) = U(t, t) =
t∫

t0
uo(u)du +

t1∫
t
ud (u)du

At equilibrium, all N commuters are leaving origin between t and t
and have the same utility level U
Utility at t and t is equal to free-flow utility

t0 t t∗ t t1
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Bottleneck Model
Equilibrium

Equilibrium travel times are implicitly given by

U0(t)− U =
t+T (t)∫

t
ud (s)ds, ∀t ∈ [t, t]

Departure rate of individuals are derived from queue length equation:

r(t) = s · uo(t)/ud (t + T (t)), t ∈ [t, t]

t0 t_ t * t t1
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Bottleneck Model
Discretization

The model presented above assume a continuous strategy space
(i.e. continuous time) and a continuum of commuters
Many papers with numeric methods assume a discrete strategy set
(e.g. papers on day-to-day dynamics)
Otsubo and Rapoport (2008) assume indivisible commuters
I assume a discrete strategy set and discrete commuters
The results of the continuous and discrete model are very close for a
large number of commuters and periods

Details
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Day-to-Day Dynamics
Introduction

Day-to-day dynamics models study the convergence of the
bottleneck model to an equilibrium
These models try to replicate the behaviors of commuters from day
to day
Iryo (2008) proves the instability of the equilibrium with continuous
iterations
Guo et al. (2018) proves the instability of the equilibrium with
discrete iterations
Both papers use the proportional swap mechanism
These models are limited to homogeneous commuters in a
single-road network
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Day-to-Day Dynamics
Proportional Swap Mechanism (Smith, 1984)

Departure-time space is discretized and commuter space is
continuous
The population shift from departure ti ∈ T to departure tj ∈ T from
one iteration to the next is

λr(ti ) [Uj(r)− Ui (r)]+

where
λ defines the step size,
r(ti ) is the departure rate at time ti
Ui (r) is the utility associated with departure ti
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Day-to-Day Dynamics
Convergence results (Lamotte and Geroliminis, 2020)
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Algorithm
Potential

Given departure times t∗ = {t∗1 , . . . , t∗N}, the potential ϕi of a
commuter i is the relative difference between the maximum utility
and the current utility of the commuter

ϕi (t∗) = maxt Ui (t)− Ui (t∗i )
Ui (t∗i )

The average potential 1
N
∑

i ϕi (t∗) can be used to measure distance
of a state t∗ to equilibrium
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Algorithm
Naive Algorithm

1 Initialize random departure times t0 and set iteration counter τ = 0.
2 For each individual i , compute the utility Uτi (t) that she can get at

any departure time t, given the departure times tτ−i of the other
individuals.

3 Compute the potential ϕτi of each individual i .
4 Randomly select an individual with probabilities proportional to

(ϕτi )β .
5 Switch the selected individual to her best departure time:

tτ+1
i = arg maxt Uτi (t).

6 Stop the algorithm if some convergence criterion is met; otherwise,
set τ = τ + 1 and go back to 2.

Example
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Algorithm
Naive Algorithm
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Algorithm
Main Algorithm

1 Initialize random departure times t0 and set iteration counter τ = 0.
2 For each individual i , compute the utility Uτi (t) that she can get at

any departure time t, given the departure times tτ−i of the other
individuals.

3 Compute the potential ϕτi of each individual i .
4 Randomly select an individual with probabilities proportional to

(Φτ
i )β .

5 Sort the departure times of the selected individual by order of
decreasing utility and randomly select one departure time t̂ in the
first quantile of order q. Switch the selected individuals to this
departure time, i.e. tτi = t̂ .

6 Compute some criterion measuring distance to equilibrium. If the
switch does not improve this criterion, then revert the switch by
putting the switched individual back to her previous departure time.

7 Stop the algorithm if some convergence criterion is met; otherwise,
set τ = τ + 1 and go back to 2.
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Simulations
Setup

N = 1200, m + 1 = 181, t0 = −1.5, t1 = 1.5
Marginal utility at origin is uo(t) = 1− tan−1(4t)

π and marginal utility
at destination is ud (t) = 1 + tan−1(4t)

π
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Simulations
Potential Convergence

Calibration

β = 0, q = 20%
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Simulations
Results

Departure rate Queue length
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Heterogeneity
Setup

Marginal utility at origin is uo
i (t) = 1− tan−1(4·vo

i ·t)
π and marginal utility

at destination is ud
i (t) = 1 + tan−1(4·vd

i ·t)
π where

(
ln(vo

i ), ln(vd
i )
)T ∼ N

(
(0, 0)T ,

(
µ 0
0 µ

))
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Heterogeneity
Results

Departure rate Queue length
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With higher commuter heterogeneity, rush hour is shorter and congestion
is smaller
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Endogeneity
Setup (from Fosgerau and Small, 2017)

Marginal utility at origin is uo(t) = [xo(t)]πo and marginal utility at
destination is ud (t) = [xd (t)]πd , with

U(td , ta) = 2 ln
(∫ td

t0
uo(t)dt

)
+ ln

(∫ t1

ta

ud (t)dt
)

πo and πd represent the intensity of the agglomeration economies at
origin and at destination
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Endogeneity
Results

Departure rate Queue length
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With higher agglomeration economies, rush hour is earlier and congestion
is larger
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Road Network
Setup (from Arnott et al., 1993)

Network with two upstream bottlenecks (capacity s1 and s2) and one
downstream bottleneck (capacity sd)
n1 = 150 commuters leaving from origin O1 and n2 = 300
commuters leaving from origin O2
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Road Network
Paradox

With α-β-γ preferences, Arnott et al. show that the derivative of
total cost is positive with s2 under the following condition

(1 + ν)(1− θ) < sd
s2
< max

(
1, 1− θ +

√
ν(ν + θ)(1− θ)

)
where θ = β/α and ν = n1/n2
We test if the paradox holds with nonlinear preferences
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Endogeneity
Results

s2 Average potential Total cost
2 0.98% 40015
3 0.32% 31927
4 0.38% 32946
5 0.33% 32191

The paradox still holds with nonlinear preferences for some values of s2
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Conclusion

I proposed an algorithm able to find the equilibrium in a general
bottleneck model
The algorithm can be used to identify novel properties in intractable
models
Directions for future research:

Calibration
Different forms of heterogeneity
Policies
Joint morning-evening commute choice
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Discrete Bottleneck Model
Setup

There are N commuters and m + 1 time periods
The strategy set is

T = {t0, t0 + ∆t, t0 + 2∆t, . . . , t0 + (m − 1)∆t, t1}

where ∆t = (t1 − t0)/m
Queue length is defined by D(t0) = max

(
r(t)− s, 0

)
and

D(t) = max
(
D(t − 1) + r(t)− s, 0

)
, ∀t ∈ T , t > t0

where r(t) is the number of commuters leaving from origin at time t
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Discrete Bottleneck Model
Travel Time Probability

If D(td − 1) = 0 and r(td ) ≤ s, T (td , td ) = 1 and T (td , t) = 0, for
any t 6= td
If D(td − 1) = 0 and r(td ) > s,

T (td , ta) =


0 if ta < td

s
r(td ) if ta ∈ [td , t̃)
r(td ) mod s

r(td ) if ta = t̃
0 if ta > t̃

,

where t̃ = td + br(t)/sc is the time at which the last commuter is
served
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Discrete Bottleneck Model
Travel Time Probability

If D(td − 1) > 0,

T (td , ta) =



0 if ta < t̂
s−R(td )

r(td ) if ta = t̂
s

r(td ) if ta ∈ (t̂, t̃)(
r(td )−s+R(td )

)
mod s

r(td ) if ta = t̃
0 if ta > t̃

,

where
t̂ = td + bD(td − 1)/sc the time at which the last commuter in the
queue at time td − 1 is served;
R(td) = D(td − 1) mod s the number of commuters in the queue at
time td − 1 who are served at time t̂;
t̃ = t̂ + b(r(td)− s + R(td))/sc the time at which the last commuter
who arrived at the bottleneck at time td is served.
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Discrete Bottleneck Model
Example of Travel Time Probability

s = 5, D(td − 1) = 7, r(td ) = 15

t Capacity s # served who # served who T (td , t)
left before td left at td

td 5 5 0 0
td + 1 5 2 3 3/15
td + 2 5 0 5 5/15
td + 3 5 0 5 5/15
td + 4 5 0 2 2/15
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Discrete Bottleneck Model
Utility and Nash Equilibrium

Utility when leaving at time t is

Ui (t) =
∑
τ≤t

uo
i (τ) +

∑
τ≥t

ud
i (τ)F (t, τ),

where
F (t, τ) =

∑
u≤τ

T (t, u)

An equilibrium of this model is a set of departure-time values
t∗ = {t∗1 , . . . , t∗N} ∈ T N such that no commuter i can increase her
utility by switching from departure time t∗i to t 6= t∗i , while
departure times t∗−i of the other commuters are fixed

Go back
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Algorithm Example
Possible Equilibrium

s = 2
t uo(t) ud (t) Ufreeflow(t)
0 3 0 11
1 3 3 14
2 4 4 15
3 2 1 13
4 0 0 12

t r(t) Ut(t) maxτ Ut(τ) ϕ(t)
0 0 (11) 13 (2/11)
1 2 14 14 0
2 4 13 13 0
3 0 (11) 13 (2/11)
4 0 (12) 13 (1/12)
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Algorithm Example
Iteration 0

t uo(t) ud (t) Ufreeflow(t)
0 3 0 11
1 3 3 14
2 4 4 15
3 2 1 13
4 0 0 12

t r(t) Ut(t) arg maxτ Ut(τ) maxτ Ut(τ) ϕ(t)
0 1 11 1 14 3/11
1 1 14 1 14 0
2 2 15 2 15 0
3 1 13 1 14 1/13
4 1 12 1 14 1/6
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Algorithm Example
Iteration 1

t uo(t) ud (t) Ufreeflow(t)
0 3 0 11
1 3 3 14
2 4 4 15
3 2 1 13
4 0 0 12

t r(t) Ut(t) arg maxτ Ut(τ) maxτ Ut(τ) ϕ(t)
0 0 (11) · · ·
1 2 14 1 14 0
2 2 15 2 15 0
3 1 13 2 13.67 2/39
4 1 12 2 13.67 5/36
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Algorithm Example
Iteration 2

t uo(t) ud (t) Ufreeflow(t)
0 3 0 11
1 3 3 14
2 4 4 15
3 2 1 13
4 0 0 12

t r(t) Ut(t) arg maxτ Ut(τ) maxτ Ut(τ) ϕ(t)
0 0 (11) · · ·
1 2 14 1 14 0
2 3 13.67 2 13.67 0
3 1 13 1, 2 or 3 13 0
4 0 (12) · · ·

Go back
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Simulations
Convergence of Potential with β

β defines how likely it is to switch individuals with high potential
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Simulations
Convergence of Potential with q

q defines how the new departure time of the switched individual is
selected
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Simulations
Switch validity

A switch is valid if it improves some distance to equilibrium
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Simulations
Potential Convergence with Morning and Evening Commute

Morning commute Evening commute
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Simulations
Potential Convergence with α-β-γ Preferences
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Simulations
Results with α-β-γ Preferences

Departure rate Queue length

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Time

0

200

400

600

800

1000

1200

Cu
m

ul
at

iv
e 

de
pa

rtu
re

 ra
te

Simulation results
Theoretical results

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Time

0

100

200

300

400

500

Qu
eu

e 
le

ng
th

Simulation results
Theoretical results

Go back


	Introduction
	Bottleneck Model
	Day-to-Day Dynamics
	Algorithm
	Simulations
	Heterogeneity
	Endogeneity
	Road Network
	Conclusion
	Appendix

