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Introduction

Motivation

@ Standard transportation policies are non-personalized:
subsidies and taxes are equal for everyone or they differ
according to objective and observable characteristics.

@ Example: In several countries, public-transit services are
subsidized. The subsidy is equal for everyone or vary by
population group (e.g., poor households, students).

e Nowadays, decision makers have access to more
information so economic policies can be
personalized, by accounting for individual's preferences.
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Example: No Policy

Car Walk
Alice Indiv. value 3 2
CO, emissions 1 0
Indiv. value 4 2
Bob CO, emissions 2 0

@ Without policy, Alice and Bob choose the alternative
with the largest individual value (Car for both).

@ To minimize CO, emissions, they should both choose to
walk.

@ Public expenses: 0; CO, emissions: 3.
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Example: Flat Subsidy

Car  Walk

Alice Indiv. value 3 242
CO, emissions 1 0

Bob Indiv. value 4 242
CO, emissions 2 0

e With a flat subsidy of 2 € for walking, both Alice and
Bob switch to walking.

@ Public expenses: 4; CO, emissions: 0.
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Example: Personalized Incentives

Car  Walk

Alice Indiv. value 3 241
CO, emissions 1 0

Bob Indiv. value 4 242
CO, emissions 2 0

e With a personalized incentive policy (1 € for Alice and
2 € for Bob), they both switch to walking.

@ The CO, emissions are the same than with a flat subsidy
but the expenses decreased by 1 €.

@ Public expenses: 3; CO, emissions: 0.
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Contributions

@ We show that the problem of finding an optimal
personalized incentive policy, in a discrete-choice
framework, is a Multiple-Choice Knapsack Problem
(MCKP).

@ We propose a polynomial-time greedy algorithm to
find a near-optimal policy and we analyze its analytical
and economic properties.

@ Numerical application to mode choice for Lyon (France).
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Multiple-Choice Knapsack Problem

@ Input: set of items, with a
weight and a value, that are
classified in different classes;
knapsack with a given weight
limit.

@ One item from each class is
in the knapsack.

@ Goal: maximize the value of
the items in the knapsack,
subject to the weight
constraint.
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Personalized Incentive Policy

@ Input: set of transportation
modes, with an individual
value and CO3 emissions, for S 240
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@ Goal: minimize the CO,
emissions of the modes
chosen, subject to the budget
constraint.
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Assumptions

o Fixed congestion: the individual values are independent
from the transportation mode chosen by the other
individuals.

@ Independent CO; emissions: the CO, emissions are
independent from the transportation mode chosen by the
other individuals.

@ Perfect information: the regulator knows perfectly the
individual values and the CO, emissions for any available
transportation mode.
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Greedy Algorithm

@ We propose a polynomial-time greedy algorithm,
extending Kellerer et al. (2004)'s algorithm.

@ The algorithm returns the individual incentives and the
CO; emissions reduction, given a budget.

@ It also computes the Maximum Social Welfare Curve
(CO; reduction achievable for a range of budgets).
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Algorithm Properties

e Upper bound: solution is boundedly close to the
optimum.

@ Anytime algorithm: solution is optimal for the budget
spent at any iteration.

@ Diminishing returns: social welfare is concave with the
expenses of the regulator.

—— Maximum social welfare curve Cg
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Data

@ Census data for 220k individuals in Lyon's area
(France): home, workplace, transportation mode for
commuting, socio-demographic variables.

@ Analysis of the transportation mode chosen for
home-work trips.

@ Travel times data: OpenStreetMap and HERE.

e 5 transportation modes: car, public transit, walking,
cycling and motorcycle.
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Intrinsic Utilities and Social Indicators

@ Individual values are estimated from a Multinomial
Logit model.
@ CO, emissions are computed with ADEME data.

Daily CO, emissions 595.26 tons of CO»
Yearly CO; emissions (200 days) 119050 tons of CO»
Average yearly individual CO» emissions 0.54 tons of COy
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Results

@ Budget is set to 1800 € (per day).

@ Only 1.57 % of individuals receive incentives.

@ CO; reduction: 18 tons per day (3 % of total emissions).
@ Average regulator’s cost of CO,: 100 € per ton.
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Results

Mode choice after the policy
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@ The car share decreases
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Mode choice before the polic;

motoreycle % 0.005%  0.001%  0.001%

total | 55.843% 28.458%- 100%
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Summary

@ Personalized-incentive policy boundedly close to optimum
can be computed with MCKP algorithms.

@ The policy shows diminishing returns behavior.

@ Decrease of 3 % of the CO, emissions, by impacting only
1.57 % of individuals.
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Future Works

@ Extend the model to imperfect information on the
individual values, by computing switching probabilities.

@ Account for congestion with an iterative procedure.
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