Framework and Assumptions	Optimal Policy	Application to Mode Choice	Conclusion

Large-Scale Allocation of Personalized Incentives CY Transport & Urban Seminar

Lucas Javaudin, Andrea Araldo, André de Palma

April 22, 2021

Introduction •0000000	Framework and Assumptions	Optimal Policy	Algorithm 00000	Application to Mode Choice	Conclusion
	uction				
Bonus-IVI	alus Écologique				

- In France, the "eco-friendly" cars are subsidized and the most polluting cars are taxed.
- Non-personalized policy: everyone is facing the same subsidy or tax for the same vehicle model.
- Example: For electric cars, there is a subsidy of 6000 euros.
- **Inefficient policy:** individuals receive the same subsidy or pay the same tax, independently of their preferences or car usage.

Introduction 0000000	Framework and Assumptions	Optimal Policy	Algorithm 00000	Application to Mode Choice	Conclusion			
Introduction								
Tripod Po	olicy							

Araldo, A., Gao, S., Seshadri, R., Azevedo, C.L., Ghafourian, H., Sui, Y., Ayaz, S., Sukhin, D. and Ben-Akiva, M., 2019. System-Level Optimization of Multi-Modal Transportation Networks for Energy Efficiency using Personalized Incentives: Formulation, Implementation, and Performance. *Transportation Research Record*, *2673*(12), pp.425-438.

- Smartphone app proposing different alternatives (mode, departure time and route) to perform a trip.
- Incentives are proposed for energy-efficient alternatives.
- Incentive amount is the product of the energy savings with a **universal Token Energy Efficiency (TEE)**.
- Optimization problem to compute the best TEE, given a **limited budget**.
- Account for exact trip characteristics but **ignore individuals preferences**.

Introduction 00000000	Framework and Assumptions	Optimal Policy	Algorithm 00000	Application to Mode Choice	Conclusion 00		
Introduction							
Example							

	Alice		Bob	
Alternative / Individual	WTP	CO_2	WTP	CO_2
Car	3	4	4	5
PT	2	1	2	1
Walk	1	0	1	0

Introduction 00000000	Framework and Assumptions	Optimal Policy	Algorithm 00000	Application to Mode Choice	Conclusion 00		
Introduction							
Example							

	Alice		Bob	
Alternative / Individual	WTP	CO_2	WTP	CO_2
Car	3	4	4	5
PT	2 +2	1	2 +2	1
Walk	1+2	0	1+2	0

• Subsidy of 2 euros for PT and for Walking: expenses of 4 euros, CO₂ reduced by 7.

Introduction 000000000	Framework and Assumptions	Optimal Policy	Algorithm 00000	Application to Mode Choice	Conclusion 00
Introd Example	uction				
Example					

	Alice		Bo	b
Alternative / Individual	WTP	CO_2	WTP	CO_2
Car	3	4	4	5
PT	2 +1.5	1	2 +2	1
Walk	1+2	0	1 + 2.5	0

- Subsidy of 2 euros for PT and for Walking: expenses of 4 euros, CO₂ reduced by 7.
- Tripod with a TEE of 1/2: expenses of 3.5 euros, CO₂ reduced by 7.

Introduction 000000000	Framework and Assumptions	Optimal Policy	Algorithm 00000	Application to Mode Choice	Conclusion 00		
Introduction							
Example							

	Alice		Bob	
Alternative / Individual	WTP	CO_2	WTP	CO_2
Car	3	4	4	5
PT	2+1	1	2 +2	1
Walk	1	0	1	0

- Subsidy of 2 euros for PT and for Walking: expenses of 4 euros, CO₂ reduced by 7.
- Tripod with a TEE of 1/2: expenses of 3.5 euros, CO₂ reduced by 7.
- Incentive of 1 euro to Alice and 2 euros to Bob for PT: expenses of 3 euros, CO₂ reduced by 7.

Introduction 00000000	Framework and Assumptions	Optimal Policy	Algorithm 00000	Application to Mode Choice	Conclusion
Introd Goals and	uction Framework				

- How to construct an efficient personalized policy, accounting for individual preferences?
- How much money is saved compared to non-personalized policies?
- We focus on **incentive policies**, in a **discrete-choice framework**.
- A regulator uses his **limited budget** to improve a **social indicator** (e.g., CO₂ emissions reduction).

Introduction	Introduction 0000000●	Framework and Assumptions	Optimal Policy	Algorithm 00000	Application to Mode Choice	Conclusion 00
CONTRIDUTIONS	Introd Contribut					

- The problem of finding an **optimal personalized-incentive policy** is a **Multiple-Choice Knapsack Problem**.
- We propose an algorithm to find a near-optimal policy with a large number of individuals and alternatives.
- Numerical application to mode choice in Lyon (France).
- Comparison with other policies.
- Discussion of **Perfect information** assumption.

Framework and Assumptions

Optimal Policy

Algorithm 00000 Application to Mode Choice

ce Conclusion

Framework and Policy

Model and Notations

- Population of *m* individuals.
- Individual-specific choice-sets.
- *V_{i,j}* is the **intrinsic utility** of alternative *j* of individual *i* (expressed in monetary units).
- $b_{i,j}$ is the **social indicator** of alternative *j* of individual *i*.

Framework and Assumptions $0 \bullet 00$

Optimal Policy

Algorithm 00000 Application to Mode Choice

Conclusion 00

Framework and Policy

Incentives and Behavior

- *y_{i,j}* ≥ 0 is the monetary incentive given to individual *i* if she accepts to choose alternative *j*
- Total **utility** of *i* when choosing *j* is thus

$$U_{i,j}=V_{i,j}+y_{i,j}.$$

• The alternative chosen by individual *i* is such that

$$j_i^* \in \arg\max_j U_{i,j}$$
.

Framework and Policy Regulator

- A regulator is endowed with a **budget** Q.
- His budget constraint is

$$Y=\sum_i y_{i,j_i^*}\leq Q.$$

• His goal is to maximize the global social indicator:

$$B=\sum_i b_{i,j_i^*}.$$

• To do so, the regulator can choose the set of incentives $\{y_{i,j}\}_{i,j}$.

Framework and Assumptions

Optimal Policy

Algorithm 00000 Application to Mode Choice

Mode Choice Conclusion

Framework and Policy

Assumptions

- Independent intrinsic utilities: $V_{i,j}$ is independent of the choice of any individual $i' \neq i$.
- Independent social indicators: $b_{i,j}$ is independent of the choice of any individual $i' \neq i$.
- **Perfect information:** the regulator knows perfectly $V_{i,j}$ and $b_{i,j}$, $\forall i, j$.

Introduction 00000000	Framework and Assumptions	Optimal Policy •00000000	Algorithm 00000	Application to Mode Choice	Conclusion 00
Optim Example	nal Policy				

		Alice		b
Alternative / Individual	V	Ь	V	b
Car	0	0	1	0
PT	-1	3	-1	4
Walk	-2	4	-2	5

- With incentives y_{Alice,PT} = 1 + ε (and nothing else), Alice will switch to public transit and it will cost 1 + ε to the regulator.
- With incentives y_{Alice,Walk} = 2 + ε (and nothing else), Alice will switch to walking and it will cost 2 + ε to the regulator.
- Similarly, it will cost $2 + \varepsilon$ to make Bob switch to public transit, and $3 + \varepsilon$ to make him switch to walking.

Introduction 00000000	Framework and Assumptions	Optimal Policy	Algorithm 00000	Application to Mode Choice	Conclusion 00
Optim	nal Policy				

Example

		Alice		b
Alternative / Individual	W	Ь	W	b
Car	0	0	0	0
PT	1	3	2	4
Walk	2	4	3	5

Optimal Policy	Introduction 00000000	Framework and Assumptions	Optimal Policy 00000000	Algorithm 00000	Application to Mode Choice	Conclusion
Example		nal Policy				

		Alice		b
Alternative / Individual	W	Ь	W	Ь
Car	0	0	0	0
PT	1	3	2	4
Walk	2	4	3	5

• With budget Q = 1, the optimal policy is to induce Alice to switch to PT (B = 3).

Outined Deliev		
Optimal Policy Example		

		Alice		Bob	
Alternative / Individual	W	b	W	b	
Car	0	0	0	0	
PT	1	3	2	4	
Walk	2	4	3	5	

- With budget Q = 1, the optimal policy is to induce Alice to switch to PT (B = 3).
- With budget Q = 2, the optimal policy is to induce Bob to switch to PT (B = 4).

Introduction 00000000	Framework and Assumptions	Optimal Policy 000000000	Algorithm 00000	Application to Mode Choice	Conclusion 00
Optim Example	al Policy				

		Alice		b
Alternative / Individual	W	Ь	W	Ь
Car	0	0	0	0
PT	1	3	2	4
Walk	2	4	3	5

- With budget Q = 1, the optimal policy is to induce Alice to switch to PT (B = 3).
- With budget Q = 2, the optimal policy is to induce Bob to switch to PT (B = 4).
- With budget Q = 3, the optimal policy is to induce both Alice and Bob to switch to PT (B = 7).

Introduction 00000000	Framework and Assumptions	Optimal Policy	Algorithm 00000	Application to Mode Choice	Conclusion
Optim	nal Policy				
Example					

Expenses Y and social welfare B of all possible states.

_

(Alice, Bob)	Y	В
(Car, Car)	0	0
(Car, PT)	2	4
(Car, Walk)	3	5
(PT, Car)	1	3
(PT, PT)	3	7
(PT, Walk)	4	8
(Walk, Car)	2	4
(Walk, PT)	4	9
(Walk, Walk)	5	10

Introduction 00000000	Framework and Assumptions	Optimal Policy	Algorithm 00000	Application to Mode Choice	Conclusion
Optim	nal Policy				
Ontimal I	Policy Characteristics				

• The **smallest incentive needed** to induce *i* to switch to alternative *j* is

$$w_{i,j}=V_{i,j_i^0}-V_{i,j},$$

where V_{i,j_i^0} is the intrinsic utility of the alternative chosen in absence of policy.

- One optimal policy is to set either $y_{i,j} = 0$ or $y_{i,j} = w_{i,j}$, $\forall i, j$, with at most one alternative j such that $y_{i,j} > 0$, $\forall i$.
- Instead of choosing the incentive policy {y_{i,j}}_{i,j}, we can choose directly the set of alternatives chosen.
- No individual gains or loses utility with this policy.

Introduction 00000000	Framework and Assumptions	Optimal Policy 0000000000	Algorithm 00000	Application to Mode Choice	Conclusion 00
	nal Policy				

• The optimization problem of the regulator can be written as

$$\left\{egin{array}{ll} \max_{\{x_{i,j}\}_{i,j}} & \sum_i \sum_j b_{i,j} x_{i,j} \ ext{s.t.} & \sum_i \sum_j w_{i,j} x_{i,j} \leq Q \ & \sum_j x_{i,j} = 1, & orall i \ x_{i,j} \in \{0,1\}, & orall i, orall j \end{array}
ight.$$

- This is a Multiple-Choice Knapsack-Problem.
- An approximate solution can be found in polynomial time.

.

Framework and Assumptions

Optimal Policy

Algorithı 00000 Application to Mode Choice

Conclusion

Optimal Policy

Multiple-Choice Knapsack-Problem

Multiple-choice knapsack problem

Source: Xu, S., Chen, X., Pi, X., Joe-Wong, C., Zhang, P. and Noh, H.Y., 2019, March. Incentivizing vehicular crowdsensing system for large scale smart city applications. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019 (Vol. 109701C). International Society for Optics and Photonics.

Introduction 00000000	Framework and Assumptions	Optimal Policy	Algorithm ●0000	Application to Mode Choice	Conclusion
<u> </u>					
	nal Policy				
Efficiency	and Greedy Algorithr	n			

• The **efficiency** of switching individual *i* from alternative *j* to alternative *j'* is

$$\tilde{e}_{i,j\rightarrow j'}=\frac{b_{i,j'}-b_{i,j}}{w_{i,j'}-w_{i,j}}$$

• **Iterative procedure:** we "switch" individuals one by one to their subsequent alternative, according to decreasing efficiency, until the budget is depleted.

Introduction 00000000	Framework and Assumptions	Optimal Policy 000000000	Algorithm 0●000	Application to Mode Choice	Conclusion
Optim Example	al Policy				

Budget: Q = 3

	Alice		Bob			
Alternative / Individual	W	Ь	ẽ	W	Ь	ẽ
Car	0	0		0	0	
PT	1	3	3	2	4	2
Walk	2	4	1	3	5	1

Introduction 00000000	Framework and Assumptions	Optimal Policy 000000000	Algorithm 00●00	Application to Mode Choice	Conclusion 00
Optim Example	al Policy				

Budget: Q = 3

	Alice		Bob			
Alternative / Individual	W	Ь	ẽ	W	b	ẽ
Car	0	0		0	0	
PT	1	3	3	2	4	2
Walk	2	4	1	3	5	1

 Iteration 1: Best switch is Alice from Car to PT (efficiency 3, remaining budget 2).

Introduction 00000000	Framework and Assumptions	Optimal Policy 000000000	Algorithm 000●0	Application to Mode Choice	Conclusion 00
Optim _{Example}	al Policy				
		Budget: (Q = 3		

	Alice		Bob			
Alternative $/$ Individual	W	Ь	ẽ	W	b	ẽ
Car	0	0		0	0	
PT	1	3	3	2	4	2
Walk	2	4	1	3	5	1

- Iteration 1: Best switch is Alice from Car to PT (efficiency 3, remaining budget 2).
- Iteration 2: Best switch is Bob from Car to PT (efficiency 2, remaining budget 0).

Introduction 00000000	Framework and Assumptions	Optimal Policy	Algorithm 0000●	Application to Mode Choice	Conclusion 00
Optim Properties	al Policy				

- Solution is boundedly close to the optimum.
- Solution is optimal for the budget spent at any iteration.
- **Diminishing returns:** social welfare is concave with the expenses of the regulator.

Framework and Assumptions

Optimal Policy

Algorithm 00000 Application to Mode Choice

Conclusion 00

Application to Mode Choice Data

- Census data for 220k individuals in Lyon's area (France): home, workplace, mode of transportation for commuting, socio-demographic variables.
- Travel times computed from OpenStreetMap and HERE data.
- **5 modes of transportation:** car, public transit, walking, cycling and motorcycle.
- For 16k individuals, public transit is not an alternative (no route).

Framework and Assumptions $_{\rm OOOO}$

Optimal Policy

Algorithm 00000 Application to Mode Choice $0 \bullet 00000$

Conclusion 00

Application to Mode Choice

Intrinsic Utilities and Social Indicators

- Intrinsic utilities are estimated from a Multinomial Logit model.
- Social indicators are the **CO**₂ **emissions**, computed with data from ADEME.

Daily CO_2 emissions	595.26 tons of CO_2
Yearly CO_2 emissions (200 days)	119050 tons of CO_2
Average yearly individual CO ₂ emissions	0.54 tons of CO_2

amework and Assumptions

Optimal Policy

Algorithm 00000 Application to Mode Choice

Conclusion

Application to Mode Choice Social Welfare Curve

Framework and Assumptions

Optimal Policy

Algorithm 00000 Application to Mode Choice 0000000

Conclusion 00

Application to Mode Choice Results

- Budget is set to Q = 1800 euros (per day).
- After 3500 iterations, 1798.59 euros are spent.
- Only 1.57 % of individuals receive incentives.
- Reduction of CO₂ of 18 tons per day (3 % of total emissions).
- Average cost is 100 euros per ton of CO₂.

amework and Assumptions

Optimal Policy

Algorithm 00000 Application to Mode Choice 0000000

Conclusion

Application to Mode Choice Results

amework and Assumptions

Optimal Policy

Algorithm 00000 Application to Mode Choice 0000000

Conclusion

Application to Mode Choice Results

Framework and Assumptions $_{\rm OOOO}$

Optimal Policy

Algorithm 00000 Application to Mode Choice

Conclusion 00

Comparison with Other Policies

Application Results

- Enforcement: Individuals are forced to choose an alternative.
- Proportional tax: Alternatives are taxed proportionally to their CO₂ emissions.
- Tripod incentives: Incentives proportional to the CO₂ emissions of the alternatives.

Policy	Expenses Y	Ind. utility $\Delta V = \sum_i V_{i,j_i^*}$	Surplus $\Delta V - Y$	CO ₂ reduction B
Pers. incentives Enforcement Proportional tax Tripod incentives	1798.59 0 -114368.89 3596.97	0 -1798.59 -116167.48 1798.38	-1798.59 -1798.59 -1798.59 -1798.59	17.878 17.878 17.878 17.878 17.878

Introduction 00000000	Framework and Assumptions	Optimal Policy 000000000	Algorithm 00000	Application to Mode Choice	Conclusion ●0
Conclu Summary	usion				

- Personalized-incentive policy boundedly close to optimum can be computed with MCKP algorithms from Operations research.
- The policy shows **diminishing returns** behavior.
- The allocation can be reached with **proportional taxation** or with **Tripod**.
- Numerical results show that the personalized policy can reach the same social target than non-personalized policies with **half the budget**.

Introduction 00000000	Framework and Assumptions	Optimal Policy	Algorithm 00000	Application to Mode Choice	Conclusion ○●		
Conclusion							
Future Wo	orks						
				,			

- With **imperfect information**, we can use the same algorithm and set the incentive amounts to the expected utility difference. Results could be improved by learning from the responses of the individuals to the incentives.
- **Congestion** can be accounted for with an iterative procedure.